e
Outline Pointers Custody of Objects Move Semantics
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 12
October 10, 2016

| |
CPSC 427, Lecture 12 1/27

e
Outline Pointers Custody of Objects Move Semantics
: :

Uses of Pointers

Custody of Objects

Move Semantics

CPSC 427, Lecture 12 2/27
00

e
Outline Pointers Custody of Objects Move Semantics
: :

Uses of Pointers

CPSC 427, Lecture 12 3/27
00

Outline Pointers Custody of Objects Move Semantics
: :

Array data member

A class A commonly relates to several instances of class T.

Some ways to represent this relationship.
1. Composition: A can compose an array of instances of T.
This means that the T-instances are inside of each A-instance.

2. Aggregation: A can contain a pointer to a dynamically-
allocated array of instances of T. A composes the pointer but
aggregates the T-array to which it points.

3. Fully dynamic aggregation: A can contain a pointer to a
dynamically-allocated array of pointers to instances of T. The
individual T-instances can be scattered throughout memory.

Pictures of these three methods are given on the next slides.

: :
CPSC 427, Lecture 12 4/27

Outline Pointers Custody of Objects Move Semantics

Composition

T ary[4];
T* aend = ary+4;
T* myvar = &ary[2];

ary:
Composition

e o

CPSC 427, Lecture 12 5/27
00

Outline Pointers Custody of Objects Move Semantics

Aggregation

T ary[4]; . ary:

T* aend = ary+4; Aggregation T [0]

T* myvar = &ary[2]; T 1]
myvar: | O I T 2]
EOTES ; <

CPSC 427, Lecture 12 6/27
00

Outline Pointers Custody of Objects Move Semantics

Fully dynamic aggregation

T ary = new T*[4];

T** aend = ary+4;

for(k=0; k<4; ++k) {
aryl[k] =new T;

Fully
Dynamic
Aggregation

aend

}
T* myvar = ary[2];

CPSC 427, Lecture 12 7/27
e

Outline Pointers Custody of Objects Move Semantics
:

Pointer Arithmetic

Addition and subtraction of a pointer and an integer gives a new
pointer.

int a[10];

int* p;

int* q;

p = &al3];

q = &al[5];

// qp == 2

// p+l == &al4];
// q-5 == &al[0];
// What is q-67

CPSC 427, Lecture 12 8/27

e

Outline Pointers Custody of Objects Move Semantics
: :

Implementation

Pointers are represented internally by memory addresses.

The meaning of p+k is to add kxsizeof *p to the address stored
in p.
Example: Suppose p points to a double stored at memory

location 500, and suppose sizeof (double) == 8. Then p+1is a
pointer to memory location 508.

508 is the memory location of the first byte following the 8 bytes
reserved for the double at location 500.

If p points to an element of an array of double, then p+1 points
to the next element of that array.

: :
CPSC 427, Lecture 12 9/27
00

e
Outline Pointers Custody of Objects Move Semantics
: :

Custody of Objects

CPSC 427, Lecture 12 10/27
00

Outline Pointers Custody of Objects Move Semantics
: :

Copying and Moving

One of the goals of C++ is to make user-defined objects look as
much like primitive objects as possible.

In particular, they can reside in static storage, on the stack, or in
the heap, they can be passed to and returned from functions, and
they can be initialized and assigned to.

With primitive types, initialization, assignment, call-by-value
parameters and function return values are all implemented by a
simple copy of the primitive value.

The same is done with objects, but shallow copy is used by default.

This can lead to problems with large objects (cost) and with
objects having dynamic extensions (double-delete problem) as
discussed in lecture 07.

: :
CPSC 427, Lecture 12 11/27

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/ln07.pdf

Outline Pointers Custody of Objects Move Semantics
: :

Custody

We say that a function or class has custody of a
dynamically-allocated object if it is responsible for eventually
deleting the object.

A simple strategy for managing a dynamic extension in a class is
for the constructor to create the extension using new and for the
destructor to free it using delete.

In this case, we say that custody remains in the class.

: :
CPSC 427, Lecture 12 12/27

00

Outline Pointers Custody of Objects Move Semantics
: :

Transfer of Custody

Sometimes we need to transfer custody of a dynamic object from
one place to another.

For example, a function might create an object and return a
pointer to it. In this case, custody passes to the caller, since the
creating function has given up custody when it returns.

Example:

Gate* makeGate(...) {
return new Gate(...);

: :
CPSC 427, Lecture 12 13/27

00

Outline Pointers Custody of Objects Move Semantics
: :

Custody of dynamic extensions

Similarly, with a shallow copy of an object with a dynamic
extensions, there is an implicit transfer of custody of the dynamic
extension from the old object to the new.

Problem: How does the old object give up custody? Possibilities:

1. Explicitly the pointer to the extension to nullptr.
2. Destroy the object.

The first is cumbersome and error-prone. The second causes a
double-delete if the destructor does the delete.

: :
CPSC 427, Lecture 12 14/27

Outline Pointers Custody of Objects Move Semantics
:

Move versus copy

What we want in these cases is to move the object instead of
copying it. The move first performs the shallow copy and then
transfers custody to the copy.

Move semantics were introduced in c+411 in order to solve this
problem of transfer of custody of dynamic extensions.

CPSC 427, Lecture 12 15/27

00

e
Outline Pointers Custody of Objects Move Semantics
: :

Move Semantics

CPSC 427, Lecture 12 16/27
00

Outline Pointers Custody of Objects Move Semantics

When to move?

With primitives, move and copy are the same. With large objects
and objects with dynamic extensions, the programmer needs to be
able to control whether to move or copy.

C++ introduces a new kind of type called an rvalue reference.
An rvalue reference to a type T is written T&&.

Intuitively, an rvalue reference is a reference to a temporary. The
actual semantics are more complicated.

CPSC 427, Lecture 12 17/27
s

Outline Pointers Custody of Objects Move Semantics

Temporaries

Conceptually, a pure value is a disembodied piece of information
floating in space.

In reality, values always exist somewhere—in variables or in
temporary registers.

Languages such as Java distinguish between primitive values like
characters and numbers that can live on the stack, and object
values that live in permanent storage and can only be accessed via
pointers.

A goal of C++ is to make primitive values and objects look as
much alike as possible. In particular, both can live on the stack, in
dynamic memory, or in temporaries.

: :
CPSC 427, Lecture 12 18/27

Outline Pointers Custody of Objects Move Semantics
: :

Move semantics

An object can be moved instead of copied. The idea is that the
data in the source object is removed from the source object and
placed in the target object. The source object is then said to be
empty.

As we will see, what actually happens to the source object depends
on the object’s type.

For objects with dynamic extensions, the pointer to the extension
is copied from source to target, and the source pointer is set to
nullptr.

Deleting nullptr is a no-op and causes no problems.
We say that custody has been transferred from source to target.

: :
CPSC 427, Lecture 12 19/27

Outline Pointers Custody of Objects Move Semantics
: :

Motivation

A big motivation for move semantics comes from containers such
as vector.

Containers need to be able to move objects around. Old-style
containers can't work with dynamic extensions.

C++ containers support moving an object into or out of the
container.

While in the container, the container has custody of the object.

Move is like a shallow copy, but it avoids the double-delete
problem.

: :
CPSC 427, Lecture 12 20/27

Outline Pointers Custody of Objects Move Semantics
:

Implementation in C++

Here are the changes to C++ that enable move semantics.

1. The type system has been extended to include rvalue
references. These are denoted by double ampersand, e.g.,
int&&.

2. Results in temporaries are marked as having rvalue reference
type.

3. A class has now six special member functions: constructor,
destructor, copy constructor, copy assignment, move
constructor, move assignment. These are special because they
are defined automatically if the programmer does not redefine
them.

:
CPSC 427, Lecture 12 21/27

Outline Pointers Custody of Objects Move Semantics
: :

Move and copy constructors and assignment operators

Copy and move constructors are distinguished by their prototypes.
class T:

» Copy constructor: T(const T& other) { ... }

» Move constructor: T(T&& other) { ... }

Similarly, copy and move assignment operators have different
prototypes.

class T:
» Copy assignment: T& operator=(const T& other) {
-}

» Move assignment: T& operator=(T&& other) { ... }

: :
CPSC 427, Lecture 12 22/27

Outline Pointers Custody of Objects Move Semantics
: :

Default constructors and assignment operators

Under some conditions, the system will automatically create
default move and copy constructors and assignment operators.

The default copy constructors and copy assignment operators do a
shallow copy. Object data members are copied using the copy
constructor/assignment operator defined for the object’s class.

The default move constructors and move assignment operators do
a shallow copy. Object data members are moved using the move
constructor/assignment operator defined for the object’s class.

Default definitions can be specified or inhibited by use of the
keywords =default or =delete.

: :
CPSC 427, Lecture 12 23/27

Outline Pointers Custody of Objects Move Semantics
: :

Moving from a temporary object

A mutable temporary object always has rvalue reference type.

Thus, the following code moves the temporary string created by
the on-the-fly constructor string("cat") into the vector v:

#include <string>
#include <vector>
vector<string> v;
v.push_back(string("cat"));

CPSC 427, Lecture 12 24/27
s

Outline Pointers Custody of Objects Move Semantics
: :

Forcing a move from a non-temporary object

The function std: :move() in the utility library can be used to
force a move from a non-temporary object.

The following code moves the string in s into the vector v. After
the move, s contains the null string.

#include <iostream>
#include <string>
#include <utility>
#include <vector>
vector<string> v;
string s;

cin >> s;

v.push_back(move(s));

CPSC 427, Lecture 12 25/27
00

Outline Pointers Custody of Objects Move Semantics

The full story

I've covered the most common uses for rvalue references, but there
are many subtle points about how defaults work and what happens
in unusual cases.

Some good references for further information are:

» Move semantics and rvalue references in C++11 by Alex
Allain.

» C++ Rvalue References Explained by Thomas Becker.

:
CPSC 427, Lecture 12 26/27

http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
http://thbecker.net/articles/rvalue_references/section_01.html

Outline Pointers Custody of Objects Move Semantics
: :

12-BracketsWithMove demo

Please look at the 12-BracketsWithMove demo for an example of
how move semantics could be incorporated into real code in a way
to avoid the double-delete problem.

There are several changes from the code in 06-BracketsCpp.

» A dummy dynamic extension has been added to Token for the
purpose of exposing the double-delete problem in case move
was implemented incorrectly.

» Stack now takes custody of the objects put onto it.

» Token has new move constructors and move assignment
definitions.

» Lots of little changes to make this all work.

CPSC 427, Lecture 12 27/27

00

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/12-BracketsWithMove/
http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/06-BracketsCpp/

	Uses of Pointers
	Custody of Objects
	Move Semantics

