
Outline Move Demo Bells and Whistles Class

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 13
October 12, 2016

CPSC 427, Lecture 13 1/20

Outline Move Demo Bells and Whistles Class

Move Demo

Bells and Whistles

The Many Uses of Classes

CPSC 427, Lecture 13 2/20

Outline Move Demo Bells and Whistles Class

Move Demo

CPSC 427, Lecture 13 3/20

Outline Move Demo Bells and Whistles Class

Special member functions demo

Recall the six so-called special member functions:

I Default constructor.
I Destructor.
I Copy constructor.
I Copy assignment.
I Move constructor.
I Move assignment.

These are automatically defined if you do nothing, but defining
some of them inhibits the automatic definition of others.

Automatic definitions can be enabled by explicitly writing
=default or disabled by writing =delete.

CPSC 427, Lecture 13 4/20

Outline Move Demo Bells and Whistles Class

Special member functions demo

The demo 13-SpecialMbrFcns defines all six special functions and
shows how they can be invoked.

It defines a class T with two private data members: an integer x
and an integer pointer a.

class T {

private:

int x;

int* a = new int[3];

public:

...

};

CPSC 427, Lecture 13 5/20

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/13-SpecialMbrFcns/

Outline Move Demo Bells and Whistles Class

Default constructor and destructor

// Default constructor

T() : x(0), a(nullptr) {

cout << " Null constructor" << endl;

}

This uses a ctor to initialize the two data members to 0 and
nullptr, respectively. It then announces itself.

// Destructor

~T() {

delete[] a;

cout << " Destructor" << endl;

}

This deleted the dynamic extension a and announces itself.

CPSC 427, Lecture 13 6/20

Outline Move Demo Bells and Whistles Class

Additional constructor

// Constructor from an int

explicit T(int x) : x(x) {

cout << " Explicit constructor T("

<< x << ")" << endl;

}

This initializes x using a ctor. a is initialized using the initializer
= new int[3] defined in the class. The keyword explicit

inhibits it from being used implicitly to convert an int to a T.

CPSC 427, Lecture 13 7/20

Outline Move Demo Bells and Whistles Class

Copy constructor and move constructor

// Copy constructor

T(const T& rhs) : x(rhs.x), a(rhs.a) {

cout << " Copy constructor" << endl;

}

Uses ctor to initialize x and a from corresponding members of rhs.

// Move constructor

T(T&& rhs) : x(rhs.x), a(rhs.a) {

if (this != &rhs) rhs.a = nullptr;

cout << " Move constructor" << endl;

}

Same as copy constructor but prevents automatic deletion of the
dynamic extension in rhs by setting a to nullptr.

CPSC 427, Lecture 13 8/20

Outline Move Demo Bells and Whistles Class

Copy assignment

// Copy assignment

T& operator=(const T& rhs) {

x = rhs.x;

a = rhs.a;

cout << " Copy assignment" << endl;

return *this;

}

Uses operator=() to assign x and a from the corresponding
members of rhs. Returns a reference to the left-hand side in
keeping with other assignment operators.

Why wasn’t a ctor used here?

CPSC 427, Lecture 13 9/20

Outline Move Demo Bells and Whistles Class

Move assignment

T& operator=(T&& rhs) {

if (this != &rhs) {

x = rhs.x;

delete[] a;

a = rhs.a;

rhs.a = nullptr;

}

cout << " Move assignment" << endl;

return *this;

}

Similar to copy assignment, but:

1. What is the if-statement for?

2. Why is a deleted before the move?

3. Why is rhs.a set to nullptr after the move?

CPSC 427, Lecture 13 10/20

Outline Move Demo Bells and Whistles Class

Invoking the special functions

The main program in demo 13-SpecialMbrFcns prints a C++
statement along with output showing what happened.

[T a;]

Null constructor

a=(0, 0)

[T b(17);]

Explicit constructor T(17)

b=(17, 0x1e94030)

[T d(move(b));]

Move constructor

d=(17, 0x1e94030), b=(17, 0)

CPSC 427, Lecture 13 11/20

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/13-SpecialMbrFcns/

Outline Move Demo Bells and Whistles Class

Invoking the special functions

[T e;]

Null constructor

[T f;]

Null constructor

[f = move(d);]

Move assignment

f=(17, 0x1e94030), d=(17, 0)

[T g = T(41);]

Explicit constructor T(41)

g=(41, 0x1e94050)

CPSC 427, Lecture 13 12/20

Outline Move Demo Bells and Whistles Class

Invoking the special functions
[T h;]

Null constructor

[h = T(89);]

Explicit constructor T(89)

Move assignment

Destructor

h=(89, 0x1e94070)

Destructor

Destructor

Destructor

Destructor

Destructor

Destructor

Destructor

CPSC 427, Lecture 13 13/20

Outline Move Demo Bells and Whistles Class

Bells and Whistles

CPSC 427, Lecture 13 14/20

Outline Move Demo Bells and Whistles Class

Optional parameters

The same name can be used to name several different member
functions if the signatures (types and/or number of parameters)
are diffent. This is called overloading.

Optional parameters are a shorthand way to declare overloading.

Example
int myfun(double x, int n=1) { ... }
This in effect declares and defines two methods:
int myfun(double x) {int n=1; ...}
int myfun(double x, int n) {...}

The body of the definition of both is the same.
If called with one argument, the second parameter is set to 1.

CPSC 427, Lecture 13 15/20

Outline Move Demo Bells and Whistles Class

const

const declares a variable (L-value) to be readonly.

const int x;

int y;

const int* p;

int* q;

p = &x; // okay

p = &y; // okay

q = &x; // not okay -- discards const

q = &y; // okay

CPSC 427, Lecture 13 16/20

Outline Move Demo Bells and Whistles Class

const implicit argument

const should be used for member functions that do not change
data members.

class MyPack {

private:

int count;

public:

// a get function

int getCount() const { return count; }

...

};

CPSC 427, Lecture 13 17/20

Outline Move Demo Bells and Whistles Class

Operator extensions

Operators are shorthand for functions.

Example: <= refers to the function operator <=().

Operators can be overloaded just like functions.

class MyObj {

int count;

...

bool operator <=(MyObj& other) const {

return count <= other.count; }

};

Now can write if (a <= b) ... where a and b are of type
MyObj.

CPSC 427, Lecture 13 18/20

Outline Move Demo Bells and Whistles Class

The Many Uses of Classes

CPSC 427, Lecture 13 19/20

Outline Move Demo Bells and Whistles Class

What is a class?

I A collection of things that belong together.

I A struct with associated functions.

I A way to encapsulate behavior: public interface, private
implementation.

I A way to protect data integrity, providing world with functions
that provide a read-only view of the data.

I A data type from which objects (instances) can be formed.
We say the instances belong to the class.

I A way to organize and automate allocation, initialization, and
deallocation of storage.

I A way to break a complex problem into manageable,
semi-independent pieces, each with a defined interface.

I A reusable module.

CPSC 427, Lecture 13 20/20

	Move Demo
	Bells and Whistles
	The Many Uses of Classes

