
Outline Feedback Smart Pointer Demo Goals

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 14
October 24, 2016

CPSC 427, Lecture 14 1/28

Outline Feedback Smart Pointer Demo Goals

Feedback on Programming Style

Smart Pointer Demo

More on Course Goals

CPSC 427, Lecture 14 2/28

Outline Feedback Smart Pointer Demo Goals

Feedback on Programming Style

CPSC 427, Lecture 14 3/28

Outline Feedback Smart Pointer Demo Goals

Coding Hints

In the next few slides, I will point out some miscellaneous
programming issues that turned up on PS2. Proper C++ style is
somewhat different from other languages (include C). Part of
professional-level C++ proficiency is learning not just what works
but what is simple and efficient.

CPSC 427, Lecture 14 4/28

Outline Feedback Smart Pointer Demo Goals

Zero-tolerance for compiler warnings

Compiler warnings flag things that are not proper C++ usage but
may work anyway in some environments. They generally indicate
program errors or sloppy style.

You need to learn what the warnings mean and how to avoid them.
Don’t just ignore warnings because you think they are
unimportant. “Unimportant” warnings will mask important ones
that result from real bugs in your code.

Example: Comparing an unsigned int with an int gives such a
warning.

Fix: Use appropriate integer types.

CPSC 427, Lecture 14 5/28

Outline Feedback Smart Pointer Demo Goals

Declaration order in classes

There are two schools of thought on the order of declarations
within classes:

1. Put the public functions first followed by the private.
Rationale: The public functions represent the interface and
are what clients of the class wnat to see.

2. Put the private data members and functions first followed by
the public.
Rationale: Generally names must be declarated before they are
used. It’s natural to declare data members before functions
that might use them, even if C++ provides some flexibility.

In this course, I require the second style: private first, public last.

CPSC 427, Lecture 14 6/28

Outline Feedback Smart Pointer Demo Goals

Construct semantically consistent objects

Constructors should leave objects in a semantically meaningful
state.

Avoid the paradigm common in other languages to create
uninitialized objects and then initialize data members from
member functions.

CPSC 427, Lecture 14 7/28

Outline Feedback Smart Pointer Demo Goals

Use break
Instead of

bool exit = false;

while (!exit) {

...

if (...) exit = true;

else {

...

}

}

use

for (;;) {

...

if (...) break;

...

}

CPSC 427, Lecture 14 8/28

Outline Feedback Smart Pointer Demo Goals

Use tolower()

Instead of

if (input==’Q’ || input==’q’) ...

use

#include <cctype>

...

input = tolower(input);

if (input==’q’) ...

CPSC 427, Lecture 14 9/28

Outline Feedback Smart Pointer Demo Goals

Use switch

Instead of

if (input==’a’ || input==’b’ || input==’c’) { ... }

else if (input==’p’) {

...

use

switch (input) {

case ’a’:

case ’b’:

case ’c’: ...; break;

case ’p’: ...; break;

}

CPSC 427, Lecture 14 10/28

Outline Feedback Smart Pointer Demo Goals

Use stream input to read data

Instead of

int x;

string s;

s.getline(in);

// extract substring

// convert substring to number

...

use

int x;

in >> x;

CPSC 427, Lecture 14 11/28

Outline Feedback Smart Pointer Demo Goals

continue: Instead of

for (;;) {

in >> x;

if (<error>) {

<handle error>

}

else {

<do stuff>

in >> y;

if (<error>) {

<handle error>

}

else {

<do stuff>

}

}

}

CPSC 427, Lecture 14 12/28

Outline Feedback Smart Pointer Demo Goals

use continue:

for (;;) {

in >> x;

if (<error>) {

<handle error>

continue;

}

<do stuff>

in >> y;

if (<error>) {

<handle error>

continue;

}

<do stuff>

}

CPSC 427, Lecture 14 13/28

Outline Feedback Smart Pointer Demo Goals

Use new and delete, not malloc and free

C uses malloc and free to allocate and free dynamic storage.

C++ uses new and delete.

What are the differences?

1. new and delete are type safe; malloc and free are not.

2. new calls the constructor and delete calls the destructor.
malloc and free are unaware of C++ classes and just handle
uninitialized storage.

3. Array forms new[] and delete[] call default constructors
and destructors of array elements.

Don’t use malloc and free in C++ programs.

CPSC 427, Lecture 14 14/28

Outline Feedback Smart Pointer Demo Goals

End-of-file handling

Don’t use

while (!in.eof()) {

in >> x;

<do stuff with x>

}

to read and process a file of numbers. Even if in.eof() returns
false, the next read might fail. Instead, use

for (;;) {

in >> x;

if (in.fail()) { <handle error/eof condition> }

<do stuff with x>

}

CPSC 427, Lecture 14 15/28

Outline Feedback Smart Pointer Demo Goals

Include guards

Include guards are a method of using the C preprocessor to make
sure that the declarations in a header file are not included more
than once in a compilation. Here’s how they work:

I A preprocessor symbol GATE HPP is associated with a header
file gate.hpp. Initially, GATE HPP is undefined.

I Before gate.hpp is processed, #ifndef GATE HPP is used to
test if GATE HPP is already defined.

I If it is, gate.hpp has already been processed and is skipped.

I If not, #define GATE HPP defines GATE HPP and the header
file gate.hpp is processed.

CPSC 427, Lecture 14 16/28

Outline Feedback Smart Pointer Demo Goals

Where do the include guards go?

They could be used to protect either the #include "gate.hpp"

statement or the body of the header file gate.hpp.

Because there may be many #include "gate.hpp" statements in
the program but there is only one gate.hpp file, they are normally
placed inside the header file itself, e.g.,

// File gate.hpp

#ifndef GATE_HPP

#define GATE_HPP

<body of header file>

#endif

CPSC 427, Lecture 14 17/28

Outline Feedback Smart Pointer Demo Goals

Smart Pointer Demo

CPSC 427, Lecture 14 18/28

Outline Feedback Smart Pointer Demo Goals

Dangling pointers

Pointers can be used to permit object sharing from different
contexts.

One can have a single object of some type T with many pointers in
different contexts that all point to that object.

CPSC 427, Lecture 14 19/28

Outline Feedback Smart Pointer Demo Goals

Problems with shared objects

If the different contexts have different lifetimes, the problem is to
know when it is safe to delete the object.

It can be difficult to know when an object should be deleted.
Failure to delete an object will cause memory leaks.

If the object is deleted while there are still points pointing to it,
then those pointers become invalid. We call these dangling
pointers.

Failure to delete or premature deletion of objects are common
sources of errors in C++.

CPSC 427, Lecture 14 20/28

Outline Feedback Smart Pointer Demo Goals

Avoiding dangling pointers

There are several ways to avoid dangling pointers.

1. Have a top-level manager whose lifetime exceeds that of all of
the pointers take responsibility for deleting the objects.

2. Use a garbage collection. (This is java’s approach.)

3. Use reference counts. That is, keep track somehow of the
number of outstanding pointers to an object. When the last
pointer is deleted, then the object is deleted at that time.

CPSC 427, Lecture 14 21/28

Outline Feedback Smart Pointer Demo Goals

Modern C++ Smart Pointers

Modern C++ has three kinds of smart pointers. These are objects
that act very much like raw pointers, but they take responsibility
for managing the objects they point at and deleting them when
appropriate.

I shared ptr

I weak ptr

I unique ptr

We will discuss them later in the course. For now, we present a
much-simplified version of shared pointer so that you can see the
basic mechanism that underlies all of the various kinds of shared
pointers.

CPSC 427, Lecture 14 22/28

Outline Feedback Smart Pointer Demo Goals

Smart pointers

We define a class SPtr of reference-counted pointer-like objects.

An SPtr should act like a pointer to a T.

This means if sp is an SPtr, then *sp is a T&.

We need a way to create a smart pointer and to create copies of
them.

Demo 14-SmartPointer illustrates how this can be done.

CPSC 427, Lecture 14 23/28

http://zoo.cs.yale.edu/classes/cs427/2016f/lectures/14-SmartPointer

Outline Feedback Smart Pointer Demo Goals

More on Course Goals

CPSC 427, Lecture 14 24/28

Outline Feedback Smart Pointer Demo Goals

Low-level details

I C++ is a large and complicated language with many quirks
and detailed rules.

I One goal of this course is for you to learn how to deal
effectively with a complex system where it is not feasible to
know everything about it before beginning to use it.

I Low-level details tend to be easy to find in the documentation
once you know what to look for.

I What’s important to learn is the overall roadmap of the
language and where to look to find out more.

CPSC 427, Lecture 14 25/28

Outline Feedback Smart Pointer Demo Goals

Example picky detail

I If you do not supply a constructor for a class, C++
automatically generates a null default constructor for you,
that is, one that takes no parameters and does nothing.

I If you do define a constructor, the default constructor is not
generated. If you want it, you then need to explicitly request
it or define it yourself, e.g.,

MyClass() =default;

I What if you didn’t know this and assumed the default
constructor was pre-defined? The compiler would give you an
error comment about it not being defined, and you would be
started on the track of trying to figure out why.

CPSC 427, Lecture 14 26/28

Outline Feedback Smart Pointer Demo Goals

Efficient use of resources

Efficiency is concerned with making good use of available
resources:

I Time (how fast a program works)

I Memory (how much memory the program requires)
I Other resources that are scarce and relatively costly to create:

I Network connections (TCP sockets)
I Database connections

Strategy for improving efficiency: Reuse and recycle. Maintain a
pool of currently unused objects and reuse rather than recreate
when possible.

In the case of memory blocks, this pool is often called a free list.

CPSC 427, Lecture 14 27/28

Outline Feedback Smart Pointer Demo Goals

Efficiency measurement

A first step to improving efficiency is to know how the resources
are being used.

Measuring resource usage is not always easy.

The next demo is concerned with measuring execution time.

CPSC 427, Lecture 14 28/28

	Feedback on Programming Style
	Smart Pointer Demo
	More on Course Goals

