
Outline Time Stopwatch

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 15
October 26, 2016

CPSC 427, Lecture 15 1/15



Outline Time Stopwatch

Clocks and Time Measurement

Demo: Stopwatch

CPSC 427, Lecture 15 2/15



Outline Time Stopwatch

Clocks and Time Measurement

CPSC 427, Lecture 15 3/15



Outline Time Stopwatch

How to measure run time of a program

I There is no standard procedure in C++ for accurately
measuring time.

I Time measurement depends on the software clocks provided
by your computer and operating system.

I Clocks advance in discrete clicks called jiffies. A jiffy on the
Zoo linux machines is one millisecond (0.001 seconds) long.

I Even if the clock is 100% accurate, the measured time can be
off by as much as one jiffy.

I Hence, times shorter than tens of milliseconds cannot be
directly measured with much accuracy using the standard
software clock.

CPSC 427, Lecture 15 4/15



Outline Time Stopwatch

High resolution clocks

I Linux also provides high resolution clocks based on CPU
timers.

I High resolution clocks are useful to the operating system for
task scheduling and timeouts.

I They are also available to the user for higher-precision time
measurements.

I Be aware that reading the clock involves a kernel call that
takes a certain amount of time. This itself may limit the
accuracy of timing measurements, even when the clock
resolution is sufficiently high for the desired accuracy.

I See man 7 time for more information about linux clocks.

CPSC 427, Lecture 15 5/15



Outline Time Stopwatch

Measuring time in real systems

I Measuring code efficiency in real systems is challenging. Many
factors can influence the results that are hard to control.

I Other process running on the same machine.
I Time spent in the OS moving data on and off disks.
I Memory caching behavior.

I Lacking a controlled laboratory environment, one can still take
steps to improve accuracy of tests:

I Do some tests to determine what factors seem to have a
sizable effect on the run time, e.g., the first run of a program
is likely to be slower than subsequent runs because of caching.

I Run the same test several times to get a feeling for the
variance of results.

I Make sure the optimizer isn’t optimizing away code that you
think is being executed.

CPSC 427, Lecture 15 6/15



Outline Time Stopwatch

Demo: Stopwatch

CPSC 427, Lecture 15 7/15



Outline Time Stopwatch

Realtime measurements

StopWatch is a class I wrote for measuring realtime performance
of code.

It emulates a stopwatch with 3 buttons: reset, start, and stop.

At any time, the watch displays the cumulative time that the
stopwatch has been running.

CPSC 427, Lecture 15 8/15



Outline Time Stopwatch

HirezTime class

HirezTime is a wrapper class for the system-specific functions to
read the clock.

It hides the details of the underlying time representation and
provides a simple interface for reading, computing, and printing
times and time intervals.

HirezTime objects are intended to be copied rather than pointed
at, and they try to behave like other numeric types.

CPSC 427, Lecture 15 9/15



Outline Time Stopwatch

Versions of HirezTime
There are two versions:

15-StopWatch (Linux/Unix/MacOSX) Function gettimeofday()

returns the clock in a struct timeval, which
consists of two long ints representing seconds and
microseconds. The resolution of the clock is
system-dependent, typically 1 millisecond. (See demo
15-StopWatch.)

15-StopWatch-hirez (Linux only) Function clock gettime()

returns the clock in a struct timespec, which
consists of two long ints representing seconds and
nanoseconds. The resolution of the clock is
system-dependent and can be obtained with the
clock getres() function. (See demo
15-StopWatch-hirez.)

CPSC 427, Lecture 15 10/15



Outline Time Stopwatch

HirezTime structure

I In C++, struct T and class T are very similar. In both
cases, T becomes a new type name.

I struct members are public by default.
class members are private by default.

I HirezTime is derived from struct timeval or struct
timespec, depending on the version.

I It uses protected derivation to hide the underlying
representation.

I It presents two interfaces to the world:

1. The normal public interface treats HirezTime as an opaque
object.

2. A class derived from it can access the fields of the underlying
timespec/timeval.

CPSC 427, Lecture 15 11/15



Outline Time Stopwatch

Printing a HirezTime number

Something seemingly simple like printing HirezTime values is not
so simple. Naively, one might write:

cout << t.tv_sec << "." << t.tv_usec;

where tv_sec and tv_usec are the seconds and microseconds
fields of a timeval structure.

If t represents 2 seconds and 27 microseconds, then what would
print is 2.27, not the correct 2.000027.

The class contains a print function that fixes this problem.

CPSC 427, Lecture 15 12/15



Outline Time Stopwatch

StopWatch class

StopWatch contains five member variables to remember

I Whether the watch is running or not.

I The cumulative run time to point when last stopped.

I The most recent start and stop times.

All functions are inline to minimize inaccuracies of measurement
due to the overhead within the stopwatch code itself.

CPSC 427, Lecture 15 13/15



Outline Time Stopwatch

Casting a StopWatch to a HirezTime

An operator extension defines a cast for reading the cumulative
time from a stop watch:

operator HirezTime() const { return cumSpan; }

Thus, if sw is a StopWatch,
cout << sw;

will print sw.cumSpan using sw.print().

CPSC 427, Lecture 15 14/15



Outline Time Stopwatch

Why it works

This works because operator<<() is not defined for righthand
operands of type StopWatch but it is defined for HirezTime.

The compiler then coerces sw to something that is acceptable to
the << operator.

Because operator HirezTime() is defined for class StopWatch,
the compiler will invoke it to obtain a HirezTime object, for which
<< is defined.

Note that a similar coercion happens when one writes
if(!in) {...}

to test if an istream object in is open for reading. Here, the
istream object is coerced to a bool because operator bool() is
defined inside the streams package.

CPSC 427, Lecture 15 15/15


	Clocks and Time Measurement
	Demo: Stopwatch

