e
Outline Functions Revisted (continued) Polymorphic Derivation
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 17
November 2, 2016

CPSC 427, Lecture 17 1/21
00




e —
Outline Functions Revisted (continued) Polymorphic Derivation
: :

Functions Revisted (continued)

Polymorphic Derivation

CPSC 427, Lecture 17 2/21
00




e
Outline Functions Revisted (continued) Polymorphic Derivation
: :

Functions Revisted (continued)

CPSC 427, Lecture 17 3/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
:

Functional composition

Functional composition refers to using the result returned by one
function as the argument for another.

Example: g(£f(x)).

The type of £(x) (which is the result type declared in the
definition of £ ()) must be compatible with the corresponding
parameter type for some method of g().

Types are compatible if they are the same, or if the result type can
be converted to the corresponding parameter type.

:
CPSC 427, Lecture 17 4/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Type compatibility
Here's what the compiler does when it sees the call g(f(x)).
1. It finds the type of £(x). Call it T.
2. It looks for a method for g with signature (T).
3. If it finds one, that method is selected.
4

. If not, it searches the methods for g with signatures that are
compatible with (T), meaning that it is possible to convert T
to the type required by the signature.

5. If it finds exactly one such method, then that is used.

6. If it fails to find one, it reports “no match”, and it lists the
candidates it tried.

7. If it finds more than one possible method, it reports
“ambiguous” .

CPSC 427, Lecture 17 5/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Calling constructors implicitly
Normally, constructors are called implicitly when an object is
created, whether by new (in the case of dynamic storage) or by
having a declaration executed (in the case of automatic storage).

When several constructor methods are present, which is chosen
depends on the arguments supplied, either explicity or through
ctors, but the call itself is implicit.
Examples
» MyClass b creates a stack object and invokes the default
constructor MyClass ().

» MyClass b(4): creates a stack object and invokes
constructor MyClass(4).

» new MyClass(6) creates a dynamic object and invokes
constructor MyClass(6).

CPSC 427, Lecture 17 6/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Calling constructors explicitly

Constructors can also be called explicitly, just like ordinary global
functions.

The meaning is to create a new temporary stack object, just as a
new temporary is created to hold the result of y+z in the
expression x* (y+z).

As with all object construction, the constructor is called when the
object is created, and the destructor is called when it is deleted.

Because the created object is temporary, it must be used
immediately, after which it will be discarded.

This is how throw Fatal("Error message") works. Fatal()
creates an exception object of type Fatal for use by throw.

: :
CPSC 427, Lecture 17 7/21




Outline Functions Revisted (continued) Polymorphic Derivation
:

Conversion using constructor

Now suppose £ () returns an object of type A& and g() expects an
argument of type B. What happens with g(£())?7

Example 1:

class A; // forward declaration

class B {
public:

BO{}
B(A& aa) { cout << "B constructor called" << endl; }

}
Compiler will use B's constructor to build a B& from an A&.

Output is “B constructor called’.

:
CPSC 427, Lecture 17 8/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Conversion using a cast
Example 2:

class B; // forward declaration

class A {
public:
operator B() {
cout << "operator B cast called" << endl;
return *new B;

};

Compiler will use A: :operator B() to cast the A& returned by
f () to the B expected by g().

Output is “operator B cast called”.

: :
CPSC 427, Lecture 17 9/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

What if both options exist?
class A; // forward declaration
class B { public:

BO{}
B(A& aa) { cout << "B constructor called" << endl; }

};
class A { public:
operator B() {
cout << "operator B cast called" << endl;
return *new B;
}
};
A% £() { return *new A; }
B& g(B aa) { return #*new B; }

Compiler will complain “error: conversion from ’A’ to
’B’ is ambiguous”.
: :

CPSC 427, Lecture 17 10/21
00




e —
Outline Functions Revisted (continued) Polymorphic Derivation
: :

Polymorphic Derivation

CPSC 427, Lecture 17 11/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Some uses for derived classes.

» Code reuse. A base class can contain one copy of code that is
be used by several derived variants through inheritance.

» Modularity. The functionality provided by a base class can be
extended in a derived class. Example: BSquare extends
Square by adding board coordinates and clusters.

> Generic programming and isolation. Demo 17-Craps-extended
contains a simulator for the gambling game “craps” that can
use different dice implementations.

» Polymorphic collections. A company has different kinds of
employees with different rules for calculating their pay, each
represented by a derived class with its own calculatePay
function appropriate to that kind of employee.

: :
CPSC 427, Lecture 17 12/21




Outline Functions Revisted (continued) Polymorphic Derivation
:

Type Hierarchies

Consider following simple type hierarchy:

class B { public: int £O; ... };
class U : B { int £O); ... };
class V : B { int £QO; ... };

We have a base class B and derived classes U and V.
A different method £ () is defined in each.

Relationships: A Uis a B (and more). A V is a B (and more).

A U can be used wherever a B is expected.

Example: Definition £ (B& x) ... ;callU z; f(z);

Inside of £ (), only the B-part of z is visible. This is called slicing.

CPSC 427, Lecture 17 13/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Pointers and slicing

Declare Bx bp; U*x up = new U; V* vp = new V.
Can write bp = up; or bp = vp;.

Why does this make sense?
» *up has an embedded instance of B.
» *vp has an embedded instance of B.

If bp = up, then bp points to the embedded B-instance of object
*xup. The rest of *up is inaccessible because of object slicing.

: :
CPSC 427, Lecture 17 14/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Ordinary derivation

In our previous example

class B { public: int £O; ... };
class U : B { int £QO); ... };

class V : B { int £O); ... };

B* bp;

bp can point to objects of type B, type U, or type V.

Want bp->f () to refer to U: : £() if bp points to a U object.
Want bp->f () to refer to V::£() if bp points to a V object.

However, with ordinary derivation, bp—>f () always refers to

B::f().

: :
CPSC 427, Lecture 17 15/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Polymorphic derivation

The keyword virtual allows for polymorphic derivation.

class B { public: virtual int £Q); ... };
class U : B { virtual int £(); ... };

class V : B { virtual int fO); ... };

B* bp;

A virtual function is dispatched at run time to the class of the
actual object.

bp—>f () refers to U: :£() if bp points to a U.
bp->£ () refers to V::£() if bp points to a V.
bp—>f () refers to B: :£() if bp points to a B.

Here, the type refers to the allocation type.

CPSC 427, Lecture 17 16/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Unions and type tags

We can regard bp as a pointer to the union of types B, U and V.

To know which of B::£(), U::£() or V::£() to use for the call
bp->f () requires runtime type tags.

If a class has virtual functions, the compiler adds a type tag field
to each object.
This takes space at run time.

The compiler also generates a vtable to use in dispatching calls on
virtual functions.

: :
CPSC 427, Lecture 17 17/21




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Virtual destructors

Consider delete bp;, where bp points to a U but has type B*.

The U destructor will not be called unless destructor B: : "B() is
declared to be virtual.

Note: The base class destructor is always called, whether or not it
is virtual.

In this way, destructors are different from other member methods.

Conclusion: If a derived class has a non-empty destructor, the base
class destructor should be declared virtual.

CPSC 427, Lecture 17 18/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Uses of polymorphism

Some uses of polymorphism:
» To define an extensible set of representations for a class.

» To allow containers to store mixtures of different but related
types of objects.

» To support run-time variability of within a restricted set of
related types.

CPSC 427, Lecture 17 19/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Multiple representations

Might want different representations for an object.

Example: A point in the plane can be represented by either
Cartesian or Polar coordinates.

A Point base class can provide abstract operations on points.
E.g., virtual int quadrant() const returns the quadrant of
*this.

For Cartesian coordinates, quadrant is determined by the signs of
the x and y coordinates of the point.
For polar coordinates, quadrant is determined by the angle 6.

Both Cartesian and Polar derived classes should contain a
method for int quadrant() const.

CPSC 427, Lecture 17 20/21
00




Outline Functions Revisted (continued) Polymorphic Derivation
: :

Heterogeneous containers
One might wish to have a stack of Point objects.
The element type of the stack would be Pointx.
The actual values would have type either Cartesian* or Polar*.

The automatically generated type tags and dynamic dispatching
obviates the need to cast the result of pop() to the correct type.

Example:

Stack st; Pointx* p;
p = st.pop(); // no need to cast result
p->quadrant () ; // automatic dispatch

: :
CPSC 427, Lecture 17 21/21
s




	Functions Revisted (continued)
	Polymorphic Derivation

