
Outline Craps Polymorphic Visibility

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 18
November 7, 2016

CPSC 427, Lecture 18 1/19



Outline Craps Polymorphic Visibility

Demo: Craps Game

Polymorphic Derivation (continued)

Name Visibility

CPSC 427, Lecture 18 2/19



Outline Craps Polymorphic Visibility

Demo: Craps Game

CPSC 427, Lecture 18 3/19



Outline Craps Polymorphic Visibility

Game Rules

The player (known as the shooter) rolls a pair of fair dice.

1. If the sum is 7 or 11 on the first throw, the shooter wins; this
event is called a natural.

2. If the sum is 2, 3, or 12 on the first throw, the shooter loses;
this event is called craps.

3. If the sum is 4, 5, 6, 8, 9, or 10 on the first throw, this
number becomes the shooter’s point. The shooter continues
rolling the dice until either she rolls the point again (in which
case she wins) or rolls a 7 (in which case she loses).

(From http://www.math.uah.edu/stat/games/Craps.html)

CPSC 427, Lecture 18 4/19

http://www.math.uah.edu/stat/games/Craps.html


Outline Craps Polymorphic Visibility

A Craps simulator

Demo 18-Craps illustrates the use of derived classes in order to
allow the simulator to work with both random dice and
“prerecorded” dice throws stored in a file.

CPSC 427, Lecture 18 5/19



Outline Craps Polymorphic Visibility

Polymorphic Derivation (continued)

CPSC 427, Lecture 18 6/19



Outline Craps Polymorphic Visibility

Uses of polymorphism: Run-time variability

Two types are closely related; differ only slightly.

Example: Company has several different kinds of employees.

I Employee base class has a large and complicated payroll
function.

I Payroll is same for all kinds of employees except for a function
pay() that computes the actual weekly pay.

I Each employee kind has its own pay() function.

I Big payroll function is in base class.

I It calls pay() to get the actual pay for this Employee.

CPSC 427, Lecture 18 7/19



Outline Craps Polymorphic Visibility

Pure virtual functions

Suppose we don’t want B::f() and we never create instances of
the base class B.
Rather, we want every derived class to provide a definition for f().
We make B::f() into a pure virtual function by writing =0.

class B { public: virtual int f()=0; ... };

class U : B { virtual int f(); ... };

class V : B { virtual int f(); ... };

B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f() is legal.
The compiler requires every derived class to contain a method f().

CPSC 427, Lecture 18 8/19



Outline Craps Polymorphic Visibility

Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated. It can only be used as
the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are pure
virtual (except for the destructor) and there are no data members,

Pure abstract classes define an interface à la Java.

An interface allows user-supplied code to integrate into a large
system.

CPSC 427, Lecture 18 9/19



Outline Craps Polymorphic Visibility

Name Visibility

CPSC 427, Lecture 18 10/19



Outline Craps Polymorphic Visibility

Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427, Lecture 18 11/19



Outline Craps Polymorphic Visibility

Private derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // privacy violation

CPSC 427, Lecture 18 12/19



Outline Craps Polymorphic Visibility

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427, Lecture 18 13/19



Outline Craps Polymorphic Visibility

Public derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : public A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // ok

CPSC 427, Lecture 18 14/19



Outline Craps Polymorphic Visibility

The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {

protected: int z;

};

class B : A {

... f() {... z++; ...} // ok

};

CPSC 427, Lecture 18 15/19



Outline Craps Polymorphic Visibility

Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.

CPSC 427, Lecture 18 16/19



Outline Craps Polymorphic Visibility

Surprising example 1

1 class A {

2 protected:

3 int x;

4 };

5 class B : public A {

6 public:

7 int f() { return x; } // ok

8 int g(A* a) { return a->x; } // privacy violation

9 };

Result:

tryme1.cpp: In member function ’int B::g(A*)’:

tryme1.cpp:3: error: ’int A::x’ is protected

tryme1.cpp:9: error: within this context

CPSC 427, Lecture 18 17/19



Outline Craps Polymorphic Visibility

Surprising example 2: contrast the following

1 class A { };

2 class B : public A {}; // <-- public derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result: OK.

1 class A { };

2 class B : private A {}; // <-- private derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme2.cpp: In function ’int main()’:

tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 18 18/19



Outline Craps Polymorphic Visibility

Surprising example 3

1 class A { protected: int x; };

2 class B : protected A {};

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme3.cpp: In function ’int main()’:

tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 18 19/19


	Demo: Craps Game
	Polymorphic Derivation (continued)
	Name Visibility

