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Demo: Craps Game
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Game Rules

The player (known as the shooter) rolls a pair of fair dice.

1. If the sum is 7 or 11 on the first throw, the shooter wins; this
event is called a natural.

2. If the sum is 2, 3, or 12 on the first throw, the shooter loses;
this event is called craps.

3. If the sum is 4, 5, 6, 8, 9, or 10 on the first throw, this
number becomes the shooter’s point. The shooter continues
rolling the dice until either she rolls the point again (in which
case she wins) or rolls a 7 (in which case she loses).

(From http://www.math.uah.edu/stat/games/Craps.html)
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A Craps simulator

Demo 18-Craps illustrates the use of derived classes in order to
allow the simulator to work with both random dice and
“prerecorded” dice throws stored in a file.
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Polymorphic Derivation (continued)
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Uses of polymorphism: Run-time variability

Two types are closely related; differ only slightly.

Example: Company has several different kinds of employees.

I Employee base class has a large and complicated payroll
function.

I Payroll is same for all kinds of employees except for a function
pay() that computes the actual weekly pay.

I Each employee kind has its own pay() function.

I Big payroll function is in base class.

I It calls pay() to get the actual pay for this Employee.
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Pure virtual functions

Suppose we don’t want B::f() and we never create instances of
the base class B.
Rather, we want every derived class to provide a definition for f().
We make B::f() into a pure virtual function by writing =0.

class B { public: virtual int f()=0; ... };

class U : B { virtual int f(); ... };

class V : B { virtual int f(); ... };

B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f() is legal.
The compiler requires every derived class to contain a method f().
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Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated. It can only be used as
the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are pure
virtual (except for the destructor) and there are no data members,

Pure abstract classes define an interface à la Java.

An interface allows user-supplied code to integrate into a large
system.
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Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.
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Private derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // privacy violation

CPSC 427, Lecture 18 12/19



Outline Craps Polymorphic Visibility

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.
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Public derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : public A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // ok
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The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {

protected: int z;

};

class B : A {

... f() {... z++; ...} // ok

};
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Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.
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Surprising example 1

1 class A {

2 protected:

3 int x;

4 };

5 class B : public A {

6 public:

7 int f() { return x; } // ok

8 int g(A* a) { return a->x; } // privacy violation

9 };

Result:

tryme1.cpp: In member function ’int B::g(A*)’:

tryme1.cpp:3: error: ’int A::x’ is protected

tryme1.cpp:9: error: within this context
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Surprising example 2: contrast the following

1 class A { };

2 class B : public A {}; // <-- public derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result: OK.

1 class A { };

2 class B : private A {}; // <-- private derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme2.cpp: In function ’int main()’:

tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’
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Surprising example 3

1 class A { protected: int x; };

2 class B : protected A {};

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme3.cpp: In function ’int main()’:

tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’
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