
Outline Visibility Linear

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 19
November 9, 2016

CPSC 427, Lecture 19 1/30

Outline Visibility Linear

Name Visibility (continued)

Linear Data Structure Demo

CPSC 427, Lecture 19 2/30

Outline Visibility Linear

Name Visibility (continued)

CPSC 427, Lecture 19 3/30

Outline Visibility Linear

Surprising example 1

1 class A {

2 protected:

3 int x;

4 };

5 class B : public A {

6 public:

7 int f() { return x; } // ok

8 int g(A* a) { return a->x; } // privacy violation

9 };

Result:

tryme1.cpp: In member function ’int B::g(A*)’:

tryme1.cpp:3: error: ’int A::x’ is protected

tryme1.cpp:9: error: within this context

CPSC 427, Lecture 19 4/30

Outline Visibility Linear

Surprising example 2: contrast the following

1 class A { };

2 class B : public A {}; // <-- public derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result: OK.

1 class A { };

2 class B : private A {}; // <-- private derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme2.cpp: In function ’int main()’:

tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 19 5/30

Outline Visibility Linear

Surprising example 3

1 class A { protected: int x; };

2 class B : protected A {};

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme3.cpp: In function ’int main()’:

tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 19 6/30

Outline Visibility Linear

Names, Members, and Contexts

Data and function names can be declared in many different
contexts in C++: in a class, globally, in function parameter lists,
and in code blocks (viz. local variables).

Often the same identifier will be declared multiple times in
different contexts.

Two steps to determining the meaning of an occurrence of an
identifier:

1. Determine which declaration it refers to.

2. Determine its accessibility according to the privacy rules.

CPSC 427, Lecture 19 7/30

Outline Visibility Linear

Declaration and reference contexts

Every reference x to a class data or function member has two
contexts associated with it:

I The declaration context is the context in which the referent
of x (the thing that x refers to) appears.

I The reference context is the context in which the reference
x appears.

Accessibility rules apply to class data and function members
depend on both the declaration context and the reference context
of a reference x.

CPSC 427, Lecture 19 8/30

Outline Visibility Linear

Declaration context example

Example:

int x = 3; // declaration context: global

class A {

int x; // declaration context: A

void f(int x) {...} // declaration context: parameter

void g() {int x; ... } // declaration context: block local

};

CPSC 427, Lecture 19 9/30

Outline Visibility Linear

Reference context example

class A {

int x;

int f() {return x;} // reference context A

int g(A* p) {return p->x;} // reference context A

};

int main() {

A obj;

obj.x; // reference context global

}

All three commented occurrences of x have declaration context A
because all three refer to A::x, the data member declared in
class A.

CPSC 427, Lecture 19 10/30

Outline Visibility Linear

Inside and outside class references

A reference x to a data/function member of class A is

I inside class A if the reference context of x is A;

I outside class A otherwise.

For simple classes:

I an inside reference x is always valid.

I an outside reference x is valid iff the referent is public.

CPSC 427, Lecture 19 11/30

Outline Visibility Linear

Examples
References to A::x

class A {

int x;

int f() { return x; } // inside

int g(A* p) { return p->x; } // inside

int h();

};

int A::h () { return x; } // inside

#include <iostream>

int main() {

A aObject;

std::cout << aObject.x; // outside

};

CPSC 427, Lecture 19 12/30

Outline Visibility Linear

Inherited names

In a derived class, names from the base class are inherited by the
derived class, but their privacy settings are altered as described
above.

The result is that the same member exists in both classes but
with possibly different privacy settings.

Question: Which privacy setting is used to determine visibility?

Answer: The one of the declaration context of the referent.

CPSC 427, Lecture 19 13/30

Outline Visibility Linear

Inheritance example

class A { protected: int x; };

class B : private A {

int f() { return x; } // ok, x is inside B

int g(A* p) { return p->x; } // not okay, x is outside A

};

Let bb be an instance of class B. Then bb contains a field x,
inherited from class A. This field has two names, A::x and B::x.
Their declaration contexts are A and B, respectively.

The names are distinct and may have different privacy attributes.
In this example, A::x is protected and B::x is private.

CPSC 427, Lecture 19 14/30

Outline Visibility Linear

Inheritance example (continued)

class A { protected: int x; };

class B : private A {

int f() { return x; } // ok, x is inside B

int g(A* p) { return p->x; } // not okay, x is outside A

};

To determine whether a reference to x is legal, one must first
decide which x is being referenced.

First x reference refers to B::x. Second x reference refers to A::x.
Both occurrences have reference context B.

First reference is okay since declaration and reference contexts are
the same. Second reference is not okay since A::x is protected and
the reference context, B, is outside of A.

CPSC 427, Lecture 19 15/30

Outline Visibility Linear

Inaccessible base class

A base class pointer can only reference an object of a derived class
if doing so would not violate the derived class’s privacy. Recall
surprising example 2 (bottom):

1 class A { };

2 class B : private A {}; // <-- private derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

The idea is that with private derivation, the fact that B is derived
from A should be completely invisible from the outside.

With protected derivation, it should be completely invisible except
to its descendants.

CPSC 427, Lecture 19 16/30

Outline Visibility Linear

Visibility rules

Every class member has one of four privacy attributes: public,
protected, private, or hidden.

These attributes determine the locations from which a class
member can be seen.

I public members can be seen from any location.

I protected members can be seen from inside the class or its
children.

I private members can only be seen from inside the class.

I hidden members cannot be seen at all.

CPSC 427, Lecture 19 17/30

Outline Visibility Linear

Explicit privacy attributes

The privacy attributes for declared class members are given
explicitly by the privacy keywords public, protected, and
private.

There is no way to explicitly declare a hidden member.

Example:

class A {

private: int x;

protected: int y;

public: int z;

};

CPSC 427, Lecture 19 18/30

Outline Visibility Linear

Implicit privacy attributes

Inherited class members are assigned implicit privacy attributes
based on their attributes in the parent class and by the kind of
derivation, whether public, protected, or private.

1. If the member is public in the parent class, then its attribute
in the child class is given by the kind of derivation.

2. If the member is protected in the parent class, then its
attribute in the child class is protected for public and
protected derivation, and private for private derivation.

3. If the member is private or hidden in the parent class, then it
is hidden in the child class.

CPSC 427, Lecture 19 19/30

Outline Visibility Linear

Implicit privacy chart

Below is a revision of the chart presented in lecture 10.

Attribute
in base

class



Kind of Derivation
public protected private

public public protected private
protected protected protected private
private hidden hidden hidden
hidden hidden hidden hidden

Attribute in derived class.

CPSC 427, Lecture 19 20/30

Outline Visibility Linear

Summary

1. All members of the base class are inherited by the derived
class and appear in every instantiation of that class.

2. All inherited members receive implicitly defined privacy
attributes.

3. Visibility of all data members is determined solely by their
privacy attributes.

4. Public and protected base class variables are always visible
within a derived class.

5. Private and hidden base class variables are never visible in the
derived class.

6. The kind of derivation never affects the visibility of inherited
members in the derived class; only their implicit attributes.

CPSC 427, Lecture 19 21/30

Outline Visibility Linear

Linear Data Structure Demo

CPSC 427, Lecture 19 22/30

Outline Visibility Linear

Using polymorphism

Similar data structures:

I Linked list implementation of a stack of items.

I Linked list implementation of a queue of items.

Both support a common interface:

I void put(Item*)

I Item* pop()

I Item* peek()

I ostream& print(ostream&)

They differ only in where put() places a new item.

The demo 19-Virtual (from Chapter 15 of textbook) shows how
to exploit this commonality.

CPSC 427, Lecture 19 23/30

Outline Visibility Linear

Interface file

We define this common interface by the abstract class.

class Container {

public:

virtual void put(Item*) =0;

virtual Item* pop() =0;

virtual Item* peek() =0;

virtual ostream& print(ostream&) =0;

};

Any class derived from it is required to implement these four
functions.

We could derive Stack and Queue directly from Container, but
we instead exploit even more commonality between these two
classes.

CPSC 427, Lecture 19 24/30

Outline Visibility Linear

Class Linear
class Linear: public Container {

protected: Cell* head;

private: Cell* here; Cell* prior;

protected: Linear();

virtual ~Linear ();

void reset();

bool end() const;

void operator ++();

virtual void insert(Cell* cp);

virtual void focus() = 0;

Cell* remove();

void setPrior(Cell* cp);

public: void put(Item * ep);

Item* pop();

Item* peek();

virtual ostream& print(ostream& out);

};

CPSC 427, Lecture 19 25/30

Outline Visibility Linear

Example: Stack

class Stack : public Linear {

public:

Stack(){}

~Stack(){}

void insert(Cell* cp) { reset(); Linear::insert(cp); }

void focus(){ reset(); }

ostream& print(ostream& out){

out << " The stack contains:\n";

return Linear::print(out);

}

};

CPSC 427, Lecture 19 26/30

Outline Visibility Linear

Example: Queue

class Queue : public Linear {

private:

Cell* tail;

public:

Queue() { tail = head; }

~Queue(){}

void insert(Cell* cp) {

setPrior(tail); Linear::insert(cp); tail=cp; }

void focus(){ reset(); }

};

CPSC 427, Lecture 19 27/30

Outline Visibility Linear

Class structure

Class structure.

I Container specifies the common interface.

I Linear contains the bulk of the code. It is derived from
Container.

I Stack and Queue are both derived from Linear.

I Cell is a “helper” class that is aggregated by Linear.

I Item is the base type for the container elements. It is defined
by a typedef here but would normally be specified by a
template.

I Exam is a non-trivial item type used by main to illustrate
stacks and queues.

CPSC 427, Lecture 19 28/30

Outline Visibility Linear

C++ features

The demo illustrates several C++ features.

1. [Container] Pure abstract class.

2. [Cell] Friend functions.

3. [Cell] Printing a pointer in hex.

4. [Cell] Operator extension operator Item*().

5. [Linear] Virtual functions and polymorphism.

6. [Linear] Scanner pairs (prior, here) for traversing a linked list.

7. [Linear] Operator extension operator ++()

8. [Linear, Exam] Use of private, protected, and public

in same class.

CPSC 427, Lecture 19 29/30

Outline Visibility Linear

#include structure

Getting #include’s in the
right order.

Problem: Making sure
compiler sees symbol
definitions before they are
used.

Partial solution: Make de-
pendency graph. If not
cyclic, each .hpp file in-
cludes the .hpp files just
above it.

exam.hpp

item.hpp

container.hpp

linear.hpp

queue.hppstack.hpp

cell.hpp

CPSC 427, Lecture 19 30/30

	Name Visibility (continued)
	Linear Data Structure Demo

