
Outline Templates Casts

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 20
November 14, 2016

CPSC 427, Lecture 20 1/19



Outline Templates Casts

Templates

Casts and Conversions

CPSC 427, Lecture 20 2/19



Outline Templates Casts

Templates

CPSC 427, Lecture 20 3/19



Outline Templates Casts

Template overview

Templates are instructions for generating code.

Are type-safe replacement for C macros.

Can be applied to functions or classes.

Allow for type variability.

Example:
template <class T>

class FlexArray { ... };
Later, can instantiate
class RandString : FlexArray<const char*> { ... };
and use
FlexArray<const char*>::put(store.put(s, len));

CPSC 427, Lecture 20 4/19



Outline Templates Casts

Template functions
Definition:
template <class X> void swapargs(X& a, X& b) {

X temp;

temp = a;

a = b;

b = temp;

}

Use:
int i,j;

double x,y;

char a, b;

swapargs(i,j);

swapargs(x,y);

swapargs(a,b);

CPSC 427, Lecture 20 5/19



Outline Templates Casts

Specialization

Definition:

template <> void swapargs(int& a, int& b) {

// different code

}

This overrides the template body for int arguments.

CPSC 427, Lecture 20 6/19



Outline Templates Casts

Template classes

Like functions, classes can be made into templates.

template <class T>

class FlexArray { ... };
makes FlexArray into a template class.

When instantiated, it can be used just like any other class.

For a flex array of ints, the name is FlexArray<int>.

No implicit instantiation, unlike functions.

CPSC 427, Lecture 20 7/19



Outline Templates Casts

Compilation issues

Remote (non-inline) template functions must be compiled and
linked for each instantiation.

Two possible solutions:

1. Put all template function definitions in the .hpp file along
with the class definition.

2. Put template function definitions in a .cpp file as usual but
explicitly instantiate.
E.g., template class FlexArray<int>; forces compilation
of the int instantiation of FlexArray.

CPSC 427, Lecture 20 8/19



Outline Templates Casts

Template parameters

Templates can have multiple parameters.

Example:
template<class T, int size> declares a template with two
parameters, a type parameter T and an int parameter size.

Template parameters can also have default values.
Used when parameter is omitted.

Example:
template<class T=int, int size=100> class A { ... }.

A<double> instantiates A to type A<double, 100>.
A<50> instantiates A to type A<int, 50>.

CPSC 427, Lecture 20 9/19



Outline Templates Casts

Templatizing a class

Demo 20a-BarGraph results from templatizing Row and Cell

classes in 08-BarGraph.
Template parameter T replaces uses of Item within Row.

Here is what was necessary to carry this out:

1. Fold the code from row.cpp into row.hpp.

2. Precede each class and function declaration (outside of class)
with template<class T>.

3. Follow occurrences of Row with template argument <Item> in
Graph.hpp and Graph.cpp.

4. Follow each use of Row with template argument <T> in
row.hpp.

CPSC 427, Lecture 20 10/19



Outline Templates Casts

Using template classes

Demo 20b-Evaluate is a simple expression evaluator based on a
precedence parser.

It uses templates and derivation together by deriving a template
class Stack<T> from the template class FlexArray<T>, which is a
simplified version of vector<T>.

The precedence parser makes uses of two instantiations of
Stack<T>:

1. Stack<double> Ands;

2. Stack<Operator> Ators;

CPSC 427, Lecture 20 11/19



Outline Templates Casts

Casts and Conversions

CPSC 427, Lecture 20 12/19



Outline Templates Casts

Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;

unsigned u;

double d;

int* p;

(double)x; // type double; preserves semantics

(int)u; // type unsigned; possible loss of information

(unsigned)d; // type unsigned; big loss of information

(long int)p; // type long int; violates semantics

(double*)p; // preserves pointerness but violates semantics

CPSC 427, Lecture 20 13/19



Outline Templates Casts

Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.

CPSC 427, Lecture 20 14/19



Outline Templates Casts

C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast. Applies only to pointers and references to
objects. Preserves semantics. Applied at run time. [See demo
20c-Dynamic cast.]

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast. Allows const restriction to be overridden.
Applied at compile time.

CPSC 427, Lecture 20 15/19



Outline Templates Casts

Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)x.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)
Only works for single-word type names.

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int*>(p);
I const cast<int>(c);

CPSC 427, Lecture 20 16/19



Outline Templates Casts

Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.

CPSC 427, Lecture 20 17/19



Outline Templates Casts

Ambiguity

Can be more than one way to cast from B to A.
class B;

class A { public:

A(){}

A(B& b) { cout<< "constructed A from B\n"; }

};

class B { public:

A a;

operator A() { cout<<"casting B to A\n"; return a; }

};

int main() {

A a; B b;

a=b; // Triggers error comments

}

Comment from g++: conversion from ’B’ to ’A’ is ambiguous
Comment from clang++: error: reference initialization of type
’A &&’ with initializer of type ’B’ is ambiguous

CPSC 427, Lecture 20 18/19



Outline Templates Casts

explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;

class A {

public

A(){}

explicit A(B& b) { cout<< "constructed A from B\n"; }

};

...

Question: Why was an explicit definition of the default constructor
not needed?

CPSC 427, Lecture 20 19/19


	Templates
	Casts and Conversions

