e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 22
November 28, 2016

CPSC 427, Lecture 22 1/43
00

e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
| |

Exceptions (continued)
Code Reuse

Linear Containers
Ordered Containers
Multiple Inheritance

Template Example

|
CPSC 427, Lecture 22 2/43

e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Exceptions (continued)

CPSC 427, Lecture 22 3/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Standard exception class

The standard C++ library provides a polymorphic base class
std: :exception from which all exceptions thrown by components
of the C++ Standard library are derived.

These are:

exception description

bad_alloc thrown by new on allocation failure

bad_cast thrown by a failed dynamic_cast

bad_exception thrown when an exception type doesn't
match any catch

bad_typeid thrown by typeid

ios_base::failure | thrown by functions in the iostream
library

(from http://www.cplusplus.com/doc/tutorial/exceptions/)
| CPSC 427, Lecture 22 4/43 |

00

http://www.cplusplus.com/doc/tutorial/exceptions/

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete

Catching standard exceptions
Class std: :exception contains a virtual function
const char* what() const;

that is overridden in each derived exception class to provide a
meaningful error message.

Because the base class is polymorphic, it is possible to write a
single catch handler that will catch all derived exception objects.

Example:
catch (exception& e)
{
cerr << '"exception caught: " << e.what() << endl;
}

CPSC 427, Lecture 22 5/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Deriving your own exception classes from std: :exception

#include <iostream>
#include <exception>
using namespace std;
class myexception: public exception {
virtual const char* what() const throw()
{ return "My exception happened"; }
} myex; // declares class and instantiates it
int main) {
try {
throw myex;
}
catch (exception& e) {
cout << e.what() << endl;
}
return O;

}

CPSC 427, Lecture 22 6/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

Multiple catch blocks

» Can have multiple catch blocks to catch different classes of
exceptions.

> They are tried in order, so the more specific should come
before the more general.

» Can have a “catch-all” block catch (...) that catches all
exceptions. (This should be placed last.)

Demo 21d-Exceptions-cards has an example of this as well.

:
CPSC 427, Lecture 22 7/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete

Rethrow

A catch block can do some processing and then optionally
rethrow the exception or throw a new exception.

» One exception can cause multiple catch blocks to execute.

» To rethrow the same exception, use throw; with no

argument.
» To throw a new exception, use throw as usual with an
argument.
: :
CPSC 427, Lecture 22 8/43

e

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

A subtle fact about rethrow

Rethrowing the current exception is not the same as throwing an
exception with the same exception object.

throw e; always copies object e to special memory using the copy
constructor for e's class.

throw; does not make another copy of the exception object but
instead uses the copy already in special memory.

This difference becomes apparent if the copy is not identical to the
original (possible for a custom copy constructor), or if the copy
constructor has side effects (such as printing output).

|
CPSC 427, Lecture 22 9/43

Outline

Exceptions (continued) Reuse Linear Ordered Multiple Templete

Example of rethrowing an exception (demo 22a-Exceptions-rethrow)

1 #include <iostream>
2 using namespace std;
3 class MyException {
4 public:
5 MyException() {}
6 MyException(MyException& e) {
7 cout << "Copy constructor called\n"; }
8 “MyException() {}
9 } myex; // declares class and instantiates it
10 int main) {
11 try {
12 try { throw myex; }
13 catch (MyException& e) {
14 cout << "Exception caught by inner catch\n"; throw; }
15 }
16 catch (MyException& err) {
17 cout << "Exception caught by outer catch\n";
18 }
19 return O;
20
: :
CPSC 427, Lecture 22 10/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Results

In the preceding example, the throw myex on line 12 causes a
copy, but the throw on line 14 does not.

This produces the following output:

Copy constructor called
Exception caught by inner catch
Exception caught by outer catch

: :
CPSC 427, Lecture 22 11/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

Throw restrictions

It is possible to specify that a function can only throw certain
kinds of exceptions (or none at all).

This “feature” is regarded as a bad idea because the current
semantics are not what one would expect.

It does not prevent the exceptions from being thrown; rather, it
causes a run-time test to be inserted which calls
unexpected_exception() when an exception is thrown that is
not listed in the function’s throw specifier.

:
CPSC 427, Lecture 22 12/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Uncaught exceptions: Ariane 5

Uncaught exceptions have led to spectacular disasters.

The European Space Agency's Ariane 5 Flight 501 was destroyed
40 seconds after takeoff (June 4, 1996). The US$1 billion
prototype rocket self-destructed due to a bug in the on-board
guidance software. [Wikipedia]

This is not about a programming error.

It is about system-engineering and design failures.

The software did what it was designed to do and what it was
agreed that it should do.

: :
CPSC 427, Lecture 22 13/43

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Exceptions (continued)

Uncaught exceptions: Ariane 5 (cont.)

Heres a summary of the events and its import for system
engineering:
» A decision was made to leave a program running after launch,
even though its results were not needed after launch.
» An overflow error happened in that calculation,
» An exception was thrown and, by design, was not caught.

» This caused the vehicle's active and backup inertial reference
systems to shut down automatically.

As the result of the unanticipated failure mode and a diagnostic
message erroneously treated as data, the guidance system ordered
violent attitude correction. The ensuing disintegration of the
over-stressed vehicle triggered the pyrotechnic destruction of the
launcher and its payload.

CPSC 427, Lecture 22 14/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Termination

There are various conditions under which the exception-handling
mechanism can fail. Two such examples are:

> Exception not caught by any catch block.

> A destructor issues a throw during the stack-unwinding
process.

When this happens, the function terminate () is called, which by
default aborts the process.!

This is a bad thing in production code.

Conclusion: All exceptions should be caught and dealt with
explicitly.

!It's behavior can be changed by the user.
: :
CPSC 427, Lecture 22 15/43

e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Code Reuse

CPSC 427, Lecture 22 16/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Reusable code

One of the major goals of C++ is code reusability.

The desire to reuse code occurs in two very different scenarios.

Sharing Different parts of a single application need the same
or similar code blocks. The code should be written
once and shared by the parts that need it.
Mechanisms for code sharing include functions and
(non-polymorphic) derivation.

Libraries A code base is made available for others to use in
their applications, e.g., the C++ Standard Library.
Useful mechanisms include polymorphic derivation
and templates.

: :
CPSC 427, Lecture 22 17/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Problems with reusing code

The problem with code reuse is that one rarely wants to reuse the
exact same piece of code. Rather, one wants similar code but
specialized to a particular application.

For example, most useful functions take parameters which tell the
function what data to compute on. Different applications can call
the function with their own data.

Similarly, containers such as vector make sense for many different
kinds of objects. The STL container vector<T> allows the generic
vector to be specialized to any suitable type T object.

: :
CPSC 427, Lecture 22 18/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

How to allow variability

Code reusability becomes the problem of bridging the gap between
abstract general code and specific concrete application.

» For functions, the various function call mechanisms bridge the
gap.

» With polymorphic derivation, a base class pointer pointing to
a specific derived class object bridges the gap.

» With templates, the template parameter bridges the gap.

In all three cases, application-specific data must satisfy the
constraints required by the general code.

:
CPSC 427, Lecture 22 19/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

Specifying constraints

One of the important mechanisms in C++ for specifying constraints
is the type system.

» For functions, the types of the actual arguments must be
compatible with the declared types of the parameters.
Violations of these constraints can be detected at compile
time.

» With polymorphic derivation, the type system also allows for
some constraint checking, but a dynamic downcast (convert
from pointer-to-base to pointer-to-derived) requires runtime
checking.

» With templates, specifying and checking the constraints is
more difficult. We explore some of the ways this can be done.

:
CPSC 427, Lecture 22 20/43

e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Linear Containers

CPSC 427, Lecture 22 21/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

Demo 19-Virtual

Linked list code was introduced in demo 08-BarGraph, where a
Row was a linked list of Item*, where an Item contained exam
information for a particular student.

Demo 19-Virtual extracted the linked list code from Row and
called it Linear. The specific Item class from 08-BarGraph was
renamed Exam, and the type Item was reserved for the kind of
object that could be put in a linked list.

:
CPSC 427, Lecture 22 22/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Sharing in 19-Virtual

19-Virtual observes that stacks and queues are very similar data
structures.
> They are both linear lists of items.
» Both support operations put () and pop() that allow items to
be inserted into and removed from the list.
» The only difference is where in the list new items are inserted.
The common code is in the base class Linear. The derived classes

Stack and Queue override virtual base class functions as needed
for their specializations.

: :
CPSC 427, Lecture 22 23/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

Abstract containers

Both Stack and Queue are examples of list containers that
support four operations: put, pop, peek, and print.

Class Container is an abstract base class with a virtual destructor
and four pure abstract functions put, pop, peek, and print.

Linear is derived from Container. This ensures that any generic
code for dealing with containers can handle Linear objects.

However, Container is general on only one dimension. It is still
specific to containers of Item* objects.

:
CPSC 427, Lecture 22 24/43
s

e
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
| |

Ordered Containers

CPSC 427, Lecture 22 25/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Demo 22b-Multiple

The purpose of demo 22b-Multiple is to generalize the linear
containers of demo 19-Virtual to support lists of items that are
sorted according to a data-specific ordering.

It does this by adding class Ordered and Item, creating two
ordered containers of type class List and class PQueue, and
extending the code appropriately.

: :
CPSC 427, Lecture 22 26/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Ordered base class

Ordered is an abstract class (interface) that promises items can be
ordered based on an associated key.
It promises functions:

> A function key () that returns the key associated with an
item.

» Comparison operators < and == that compare the derived item
*this with an argument key.
Use:
class Item : public Exam, Ordered { ... };

Note: We can use private derivation because every function in
Ordered is abstract and therefore must be overridden in Item.

: :
CPSC 427, Lecture 22 27/43

Outline

Exceptions (continued) Reuse Linear Ordered Multiple Templete
:

class Item

Item is publicly derived from Exam, so it has access to Exam's
public and protected members.

It fulfills the promises of Ordered by defining:

bool

operator==(const KeyType& k) const { return key() == k; }

bool

operator< (const KeyType& k) const { return key() < k; }

bool

operator< (const Item& s) const { return key() < s.key(); }

KeyType is defined with a typedef in exam.hpp to be int.

CPSC 427, Lecture 22 28/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Container base class

We saw the Container abstract class in demo 19-Virtual. It
promises four functions:

virtual void put (Items*) =0; // Put in Item
virtual Itemx pop() =0; // Remove Item
virtual Itemx peek() =0; // Look at Item

virtual ostream& print(ostream&) =0; // Print all Items

Use: class Linear : Container { ... };

: :
CPSC 427, Lecture 22 29/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Additions to Linear

The meaning of put (), pop(), and peek() for ordered lists is
different from the unordered version, even though the interface is
the same.

The concept of a cursor is introduced into Linear along with new
virtual functions insert () and focus() for manipulating the
cursor.

peek() and pop () always refer to the position of the cursor.
put () inserts into the middle of the list in order to keep the list
properly sorted.

| |
CPSC 427, Lecture 22 30/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

class Linear

Linear implements general lists through the use of a cursor, a pair
of private Cell pointers here and prior.

Protected insert () inserts at the cursor.
Protected focus () is virtual and must be overridden in each
derived class to set the cursor appropriately for insertion.

Cursors are accessed and manipulated through protected functions
reset(), end(), and operator ++().

Use:
List::insert(Cell* cp) {reset(); Linear::insert(cp);}
inserts at the beginning of the list.

: :
CPSC 427, Lecture 22 31/43

00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

class PQueue

PQueue inserts into a sorted list.

void insert(Cellx cp) {
for (reset(); 'end(); ++*this) { // find insertion spot.
if (!'(*this < cp))break;
}

Linear::insert(cp); // do the insertion.

}

Note the use of the comparison between a PQueue and a Cellx*.

This is defined in 1inear.hpp using the cursor:
bool operator< (Cell* cp) {
return (*cp->data < *here->data); }

: :
CPSC 427, Lecture 22 32/43

e ——
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Multiple Inheritance

CPSC 427, Lecture 22 33/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

What is multiple inheritance

Multiple inheritance simply means deriving a class from two or
more base classes.

Recall from demo 22b-Multiple:
class Item : public Exam, Ordered { ... };

Here, Item is derived from both Exam and from Ordered.

CPSC 427, Lecture 22 34/43
s

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Object structure

Suppose class A is multiply derived from both B and C.
We write this as class A : B, C { ... };.

Each instance of A has “embedded” within it an instance of B and
an instance of C.

All data members of both B and C are present in the instance, even
if they are not visible from within A.

Derivation from each base class can be separately controlled with
privacy keywords, e.g.:
class A : public B, protected C { ... };.

| |
CPSC 427, Lecture 22 35/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Diamond pattern

One interesting case is the diamond pattern.

class D {...x ...}
class B : public D { ...}
class C : public D { ...}
class A : public B, public C { ... };

Each instance of A contains two instances of D—one in B and one
in C.

These can be distinguished using qualified names.

Suppose x is a public data member of D.

le Within A, can write B: :D: :x to refer to the first copy, and
C::D: :x to refer to the second copy.

| |
CPSC 427, Lecture 22 36/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Virtual derivation

Virtual derivation allows instances of A to have only a single
embedded instance of D.

class D { ...
class

s

B : public virtual D {
class C : public virtual D {
class A : public B, public C {

b

3

S

b

D's constructor is the first thing called when A is created, and it's
up to A to supply any needed parameters in its ctor.

: :
CPSC 427, Lecture 22 37/43

00

e ——
Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Template Example

CPSC 427, Lecture 22 38/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Using templates with polymorphic derivation

To illustrate templates, | converted 22b-Multiple to use template
classes. The result is in 22c-Multiple-template.

There is much to be learned from this example.
Today | point out only a few features.

CPSC 427, Lecture 22 39/43
00

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Container class hierarchy

As before, we have PQueue derived from Linear derived from
Container.

Now, each of these have become template classes with parameter
class T.
T is the item type; the queue stores elements of type T*.

The main program creates a priority queue using
PQueue<Item> P;

CPSC 427, Lecture 22 40/43
s

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

ltem class hierarchy

As before, we have Item derived from Exam, Ordered.

Item is an adaptor class.
It bridges the requirements of PQueue<T> to the Exam class.

CPSC 427, Lecture 22 41/43
s

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Ordered template class

Ordered<KeyType> describes an abstract interface for a total
ordering on elements of abstract type KeyType.

Item derives from Ordered<KeyType>, where KeyType is defined
in exam.hpp using a typedef.

An Ordered<KeyType> requires the following:

virtual const KeyType& key() const =0;
virtual bool operator < (const KeyType&) const =0;
virtual bool operator == (const KeyType&) const =0;

That is, there is the notion of a sort key. key () returns the key
from an object satisfying the interface, and two keys can be
compared using < and ==.

: :
CPSC 427, Lecture 22 42/43

Outline Exceptions (continued) Reuse Linear Ordered Multiple Templete
: :

Alternative Ordered interfaces

As a still more abstract alternative, one could require only
comparison operators on abstract elements (of type Ordered).
That is, the interface would have only two promises:]

virtual bool operator < (const Ordered&) const =0;
virtual bool operator == (const Ordered&) const =0;

This has the advantage of not requiring an explicit key, but it's
also less general since keys are often used to locate elements (as is
done in the demo).

: :
CPSC 427, Lecture 22 43/43

00

	Exceptions (continued)
	Code Reuse
	Linear Containers
	Ordered Containers
	Multiple Inheritance
	Template Example

