
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 427: Object-Oriented Programming Handout #4
Professor M. J. Fischer February 22, 2016

Problem Set 3
Due before midnight on Monday, March 7, 2016.

1 Assignment Goals

• Explore design patterns for modularity.

• Get practical experience in refactoring existing code to enable it to support new requirements.

• Learn how to use a vector of pointers to manage dynamically allocated data.

• Learn how to write a comparison function to sort on multiple fields.

• Learn how to write a static class function.

• Learn how to implement a real-world program specification.

2 Problem

This assignment is to complete the skater ranking program begun in assignment 2 by computing the
final placement of the skaters according to the 6.0 judging system.

Here’s an overview of the steps the program should take once the data has been read in from the
file:

1. For each judge, compute the ordinal number corresponding to each mark.

2. For each skater, compute the several ranking factors based on the skater’s ordinals. These
factors are called absolute majority (M), greater majority (GM), total ordinals of majority
(TOM), and total ordinals (TO).

3. Sort the skaters based on the ranking factors.

4. Assign final places, taking into account possible ties.

5. Print out the results

The program design problem in this assignment is to organize the data in ways that facilitate
each of these steps. A simpler organization of the data into just two classes SixOh and Score was
adequate for assignment 2.

For this assignment, you must change the data organization according to the following.1

• In addition to skaterID, judgeID, and mark, class Score should have ordinal as an
additional data member.

1There are many ways to write this code, but I am asking you to do it in the way I describe here so that you can
understand the advantages (and possible disadvantages) of doing it that way.

http://www.usfsa.org/content/Explanation%20for%206.0%20calculation.pdf

2 Problem Set 3

• Because the information needed to compute ordinal is not available when each Score
object is instantiated, Score objects must now be mutable, meaning that they can change
after they have been constructed.

• Once the ordinal data member has been set in the score object, it needs to be visible in
all copies of that object—both in the list of scores for a given judge and in the list of scores
for a given skater. To accomplish that, you should have only a single Score object for each
such skater-judge, and what were formerly lists of type vector<Score> will become lists
of type vector<Score*>, that is, lists of pointers to scores.

• You should create the Score objects in dynamic storage using new. (Make sure you under-
stand why!)

• You should create a new class Judge to represent a single judge. It’s data mem-
bers are judgeID (an unsigned), name (a string), and myScores (a list of
type vector<Score*>) containing pointers to all scores for this judge. Public mem-
ber functions include addScore, which puts a Score* onto the list myScores, and
computeOrdinals(), which performs step 1 above.

• You should create a new class Skater to represent a single skater. Its data members
are skaterID (an unsigned), name (a string), and myScores (a list of type
vector<Score*>) containing pointers to all scores for this skater. In addition, there are
unsigned data members for the four ranking factors and the final place, and there is a
boolean value to indicate if this skater is tied for the place assigned to it. Public member
functions include computeRankFactors, which performs step 2 as well as setter func-
tions to set the final place and the tie fields.

• Steps 3 and 4 will be carried out by a new member function rankAll() in class SixOh.

• Because class Score is tightly coupled with classes Judge and Skater, it is permissible
for Score to give friendship to both class Judge and class Skater.

3 Programming Notes

Here are some more details for how to compute each of the steps above.

3.1 Ordinal step

The ordinals are computed separately for each judge, using the myScores list of score pointers
described above. The method is to sort myScores in decreasing order of the mark field in each
Score object. This will require that you use the 3-argument version of sort, where the 3rd
argument is a comparison function that must return true if the first mark is strictly better than the
second and false otherwise. You should make this comparison function a private static function
in class Judge.

Once the marks have been sorted, the ordinals are assigned in decreasing order of marks. In
case a judge gives the same mark to two different skaters, both skaters should be assigned the same
ordinal, and the next ordinal should be skipped. More generally, if the next k skaters all have

Handout #4—February 22, 2016 3

the same mark, then all should be assigned the next ordinal, and the following k − 1 ordinals are
skipped.2

Here’s an example that might make this clearer. The first row represents the marks given by a
single judge to 10 skaters. The second row are the assigned ordinals.

Marks : 3.4 3.3 3.3 3.0 2.9 2.9 2.9 2.8 2.5 2.1

Ordinals : 1 2 2 4 5 5 5 8 9 10

3.2 Ranking factors step

The ranking factors are at the heart of the 6.0 judging system. They are computed for each skater
based on the ordinals for that skater from each of the judges.

The following table gives an example of how to compute the ranking factors for a skater, given
the ordinals from 7 judges.

Judges: J6 J2 J1 J5 J7 J4 J3 Summary Value

Ordinals : 1 1 1 2 2 3 3

M : ↑ 2

GM : ↑ ↑ ↑ ↑ ↑ 5

TOM : ↑ ↑ ↑ ↑ ↑ 7 = 1 + 1 + 1 + 2 + 2

TO : ↑ ↑ ↑ ↑ ↑ ↑ ↑ 13 = 1 + 1 + 1 + 2 + 2 + 3 + 3

• Absolute majority M is ordinal in the middle position when the ordinals are arranged in
increasing order. With 7 judges, the middle is the 4th position.3 In this example, J5 is in the
middle position, and M is 2.

• Greater majority GM is the number of judges whose ordinals are less than or equal to M. In
this example, the set of judges with ordinals less than or equal to M is {J6, J2, J1, J5, J7}. It
has cardinality 5.

• Total ordinals of majority TOM is the total of the ordinals that were counted in the greater
majority. In this example, it is the sum of the ordinals given by judges J6, J2, J1, J5, and J7,
so TOM is 7.

• Total ordinals TO is the sum of all ordinals for that skater. In the above example, TO = 13.

3.3 Sorting step

The ranking factors allow two skaters to be compared to see which is better. For M, TOM, and TO,
smaller is better, but for GM, larger is better (more judges in favor of the skater).

Skaters are compared on the factors M, GM, TOM, TO, in order. The first factor in which the two
skaters differ determines which is better. Only if they are the same is the next factor examined. If
two skaters are the same in all four factors, then they are tied.

In this step, all skaters are sorted according according to the “better than” order described
above.4

2In real competitions, judges are discouraged from giving two skaters the same marks since their job is to make fine
distinctions between the competitors.

3When the number n of judges is even, the middle position is defined to be n/2 + 1. The element in the middle
position is also called the median of the set of ordinals.

4Note that the comparison function used with std::sort() must define a strict weak order. This means that if two

4 Problem Set 3

3.4 Final placement step

The final placement is given by the position of the skater in the sorted list, except that ties must be
handled as in the first step. Namely, two skaters who are tied both receive the higher place and the
next place is skipped.

4 Grading Rubric

Your assignment will be graded according to the scale given in Figure 1.

Pts. Item
1. 5 A well-formed Makefile or makefile is submitted that specifies compiler

options -O1 -g -Wall -std=c++11.

2. 5 Running make successfully compiles and links the project and results in an
executable file scorer.

3. 40 Running scorer on the graders’ test files produces correct output or a reason-
able error message in case of bad input.

4. 10 Each class and function definition is preceded by a comment that describes
clearly what it does.

5. 30 All of the instructions in sections 2 and 3 are followed.

6. 10 All relevant requirements from PS1 and PS2 are followed.

100 Total points.

Figure 1: Grading rubric.

skaters are tied, neither is “better than” the other. Otherwise, std::sort() may go into an infinite loop, exhaust the
stack, and get a segmentation fault.

	Assignment Goals
	Problem
	Programming Notes
	Ordinal step
	Ranking factors step
	Sorting step
	Final placement step

	Grading Rubric

