
Outline Project management (cont.) Insertion Sort Example

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 3
January 26, 2016

CPSC 427, Lecture 3 1/34

Outline Project management (cont.) Insertion Sort Example

Project management (cont.)
A sample project
Integrated development environments

Insertion Sort Example
Insertion sort
Header file
Implementation file
Main program
Building InsertionSortCpp

CPSC 427, Lecture 3 2/34

Outline Project management (cont.) Insertion Sort Example

Project management (cont.)

CPSC 427, Lecture 3 3/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Parts of a simple project

I Header file: tools.hpp

I Implementation files: main.cpp, tools.cpp

I Object files: main.o, tools.o

I Executable: aboutme

Object files are built from implementation files and header files.

The executable is built from object files.

The Makefile describes how.

Make also keeps track of dependencies. When a header or
implementation file changes, only those object and executable files
that depend on it need to be rebuilt.

CPSC 427, Lecture 3 4/34

Outline Project management (cont.) Insertion Sort Example

A sample project

A sample Makefile

#---

Macro definitions

CXXFLAGS = -O1 -g -Wall -std=c++11

OBJ = main.o tools.o

TARGET = aboutme

#---

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

#---

Dependencies

main.o: main.cpp tools.hpp

tools.o: tools.cpp tools.hpp

CPSC 427, Lecture 3 5/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Parts of a Makefile

A Makefile has three parts:

1. Macro definitions.

2. Rules.

3. Dependencies.

Syntax peculiarities:

I Lines beginning with # are comments.

I Indented lines must start with a tab character.

CPSC 427, Lecture 3 6/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Macros

CXXFLAGS = -O1 -g -Wall -std=c++11

OBJ = main.o tools.o

TARGET = aboutme

Macros are named strings.

I CXXFLAGS is added to the g++ command line in implicit
rules. Here we want level-1 optimization, symbols for the
debugger, all warnings, and dialect c++11.

I OBJ lists the object files for our application.

I TARGET lists the final product (command).

CPSC 427, Lecture 3 7/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

Rules tell how to build product files.

1. To build all, first build everything listed in TARGET.

2. To build TARGET, first build main.o and tools.o. Then call
the linker to create TARGET from main.o and tools.o.

3. To clean generated files, delete everything in OBJ and TARGET

CPSC 427, Lecture 3 8/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

Notes:

I CXX is predefined to be the system default C++ compiler.

I $@ is a special macro that refers the target of the current rule
(aboutme in the above example).

I Uses of macros start with $ and enclose the name in
parenthesis.

CPSC 427, Lecture 3 9/34

Outline Project management (cont.) Insertion Sort Example

A sample project

Dependencies

main.o: main.cpp tools.hpp

tools.o: tools.cpp tools.hpp

Dependencies are kind of degenerate rules.
I To build main.o, first “build” main.cpp and tools.hpp.
I To build tools.o, first “build” tools.cpp and tools.hpp.

But those dependencies are source files, so there is nothing to
build. And where is the rule to build main.o?

What make does is compare the file modification dates on the
target and on the dependencies in order to know if the target
needs to be rebuilt.

When no corresponding rule is specified, a implicit rules is
invoked. Make knows that to build a .o file from a .cpp file, one
must invoke the compiler.

CPSC 427, Lecture 3 10/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Graphical development tools: IDEs

Integrated Development Environments provide graphical tools to
aid the programmer in many common tasks:

I Manage source files comprising a project;

I Display syntactic structure while editing;

I Search/replace over multiple files;

I Easy refactoring;

I Identifier completion;

I Display compiler error output in more readable form;

I Simplify edit-compile-run development cycle;

CPSC 427, Lecture 3 11/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Recommended IDE’s

Eclipse/CDT is a powerful, well-supported IDE that runs on many
different platforms.. Xcode is an Apple-proprietary IDE that only
runs on Macs. Mac users may prefer it for its greater stability and
even more features. I recommend either of these for serious C++
code development.

Geany is a lightweight IDE. It starts up much faster and is much
more transparent in what it does. It should be more than adequate
for this course.

Both Eclipse and Geany are installed on the Zoo, ready for your
use.

The early part of this course can be perfectly well done in Emacs,
so you don’t have to learn Eclipse or Geany in order to get started.

CPSC 427, Lecture 3 12/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Integrated Development Environment (e.g., Eclipse)

Advantages

I Supports notion of project — all files needed for an
application.

I Provides graphical interface to all aspects of code
development.

I Automatically creates makefile.

I Builds project with a mouse click or keyboard shortcut.

I Analyzes code as it is being written. Provides helpful
feedback.

I Allows easy navigation among project components.

I Error comments linked back to source code.

CPSC 427, Lecture 3 13/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Integrated Development Environment (e.g., Eclipse)

Disadvantages

I Complicated to learn how to use — big learning curve.

I “Simple” things can become complicated for the non-expert
(e.g., providing compiler flags) or making the font larger.

I Metadata can become inconsistent and difficult to repair.

CPSC 427, Lecture 3 14/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Integrated Development Environment

If you use an IDE, before submitting your assignment, you should:

1. Copy your source code and test data files from the IDE to a
separate submit directory on the Zoo.

2. Create a Makefile to build your project.

CPSC 427, Lecture 3 15/34

Outline Project management (cont.) Insertion Sort Example

Integrated development environments

Submitting your assignments

Regardless of how you prepared your code, you should follow these
instructions when you submit your assignment.

1. Type make in your Zoo submission directory to make sure
your program builds and runs correctly.

2. Cut and past the output from your test runs into output files.

3. Create a notes file that describes the submitted files.

4. zip or gzip and tar the entire directory into a compressed
archive file. The name should be of the form
ps1-netid123.zip or ps1-netid123.tar.gz, where you
replace “ps1” with the current assignment number and
“netid123” with your own net id.

5. Submit the archive file using classes*v2.

CPSC 427, Lecture 3 16/34

Outline Project management (cont.) Insertion Sort Example

Insertion Sort Example

CPSC 427, Lecture 3 17/34

Outline Project management (cont.) Insertion Sort Example

Insertion sort

Generic Insertion Sort
We give three implementations of simple insertion sort:

1. C version: Written in object-oriented style to the extent
possible in C.

2. C++ version: Similar objected-oriented code but with C++
support.

3. Monolithic C++ version: All of the executable code has been
placed in one big main program. All of the object-oriented
structure and modularity code has been stripped out, leaving
behind an opaque monolithic piece of code.

Click on the links below to see the code for three demos:

I 03-InsertionSortC
I 03-InsertionSortCpp
I 03-InsertionSortMonolith

CPSC 427, Lecture 3 18/34

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/03-InsertionSortC
http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/03-InsertionSortCpp
http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/03-InsertionSortMonolith

Outline Project management (cont.) Insertion Sort Example

Insertion sort

C++ version

We look at the C++ version in some detail.

This will be a whirlwind tour of classes in C++, which we will be
covering in greater detail in the coming lectures.

CPSC 427, Lecture 3 19/34

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/03-InsertionSortCpp

Outline Project management (cont.) Insertion Sort Example

Header file

dataPack.hpp

#pragma once

A more efficient but non-standard replacement for include guards:

#ifndef DATAPACK_H

#define DATAPACK_H

// rest of header

#endif

CPSC 427, Lecture 3 20/34

Outline Project management (cont.) Insertion Sort Example

Header file

class DataPack

class DataPack {

...

};

defines a new class named DataPack.

By convention, class names are capitalized.

Note the required semicolon following the closing brace.

If omitted, here’s the error comment:

../datapack.hpp:11: error: new types may not be defined in a return type

../datapack.hpp:11: note: (perhaps a semicolon is missing after the
definition of ’DataPack’)
../datapack.cpp:12: error: two or more data types in declaration of
’readData’

CPSC 427, Lecture 3 21/34

Outline Project management (cont.) Insertion Sort Example

Header file

Class elements

I A class contains declarations for data members and function
members (or methods).

I int n; declares a data member of type int.

I int getN(){ return n; } is a complete member function
definition.

I void sortData(); declares a member function that must be
defined elsewhere.

I By convention, member names begin with lower case letters
and are written in camelCase.

CPSC 427, Lecture 3 22/34

Outline Project management (cont.) Insertion Sort Example

Header file

Inline functions

I Methods defined inside a class are inline (e.g., getN()).

I Inline functions are recompiled for every call.

I Inline avoids function call overhead but results in larger code
size.

I inline keyword makes following function definition inline.

I Inline functions must be defined in the header (.hpp) file.
Why?

CPSC 427, Lecture 3 23/34

Outline Project management (cont.) Insertion Sort Example

Header file

Visibility

I The visibility of declared names can be controlled.

I public: declares that following names are visible outside of
the class.

I private: restricts name visibility to this class.

I Public names define the interface to the class.

I Private names are for internal use, like local names in
functions.

CPSC 427, Lecture 3 24/34

Outline Project management (cont.) Insertion Sort Example

Header file

Constructor

A constructor is a special kind of method.

Automatically called whenever a new class instance is allocated.

Job is to initialize the raw data storage of the instance to become
a valid representation of an initial data object.

In dataPack example, store must point to storage of max bytes,
n of which are currently in use.

CPSC 427, Lecture 3 25/34

Outline Project management (cont.) Insertion Sort Example

Header file

Constructor

DataPack(){

n = 0;

max = LENGTH;

store = new BT[max]; cout << "Store allocated.\n";

readData();

}

new does the job of malloc() in C.

cout is name of standard output stream (like stdout in C).

<< is output operator.

readData() is private function to read data set from user.

Design question: Why is this a good idea?

CPSC 427, Lecture 3 26/34

Outline Project management (cont.) Insertion Sort Example

Header file

Destructor

A destructor is a special kind of method.

Automatically called whenever a class instance about to be
deallocated.

Job is to perform any final processing of the data object and to
return any previously-allocated storage to the system.

In dataPack example, the storage block pointed to by store must
be deallocated.

CPSC 427, Lecture 3 27/34

Outline Project management (cont.) Insertion Sort Example

Header file

Destructor

~DataPack(){

delete[] store;

cout << "Store deallocated.\n";

}

Name of the destructor is class name prefixed with ~.

delete does the job of free() in C.

Empty square brackets [] are for deleting an array.

CPSC 427, Lecture 3 28/34

Outline Project management (cont.) Insertion Sort Example

Implementation file

dataPack.cpp

Ordinary (non-inline) functions are defined in a separate
implementation file.

Function name must be prefixed with class name followed by :: to
identify which class’s member function is being defined.

Example: DataPack::readData() is the member function
readData() declared in class DataPack.

CPSC 427, Lecture 3 29/34

Outline Project management (cont.) Insertion Sort Example

Implementation file

File I/O

C++ file I/O is described in Chapter 3 of textbook. Please read it.

ifstream infile(filename); creates and opens an input
stream infile.

The Boolean expression !infile is true if the file failed to open.

This works because of a built-in coercion from type ifstream to
type bool. (More later on coercions.)

readData() has access to the private parts of class dataPack and
is responsible for maintaining their consistency.

CPSC 427, Lecture 3 30/34

Outline Project management (cont.) Insertion Sort Example

Main program

main.cpp

As usual, the header file is included in each file that needs it:
#include "datapack.hpp"

banner(); should be the first line of every program you write for
this course. It helps debugging and identifies your output.
(Remember to modify tools.hpp with your name as explained in
Chapter 1 of textbook.)

Similarly, bye(); should be the last line of your program before
the return statement (if any).

The real work is done by the statements DataPack theData; and
theData.sortData();. Everything else is just printout.

CPSC 427, Lecture 3 31/34

Outline Project management (cont.) Insertion Sort Example

Building InsertionSortCpp

Manual compiling and linking

One-line version
g++ -o isort main.cpp datapack.cpp tools.cpp

Separate compilation
g++ -c -o main.o main.cpp

g++ -c -o datapack.o datapack.cpp

g++ -c -o tools.o tools.cpp

g++ -o isort main.o datapack.o tools.o

CPSC 427, Lecture 3 32/34

Outline Project management (cont.) Insertion Sort Example

Building InsertionSortCpp

Compiling and linking using make

The sample Makefile given earlier is easily adapted for this project.

Compare the Makefile on the next slide with the sample.

CPSC 427, Lecture 3 33/34

Outline Project management (cont.) Insertion Sort Example

Building InsertionSortCpp

#---

Macro definitions

CXXFLAGS = -O1 -g -Wall -std=c++11

OBJ = main.o datapack.o tools.o

TARGET = isort

#---

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

#---

Dependencies

main.o: main.cpp datapack.hpp tools.hpp

datapack.o: datapack.cpp datapack.hpp tools.hpp

tools.o: tools.cpp tools.hpp

CPSC 427, Lecture 3 34/34

	Project management (cont.)
	A sample project
	Integrated development environments

	Insertion Sort Example
	Insertion sort
	Header file
	Implementation file
	Main program
	Building blue InsertionSortCpp

