R

Outline Classes C++1/0
0000000000000
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 4
January 28, 2016

CPSC 427, Lecture 4 1/25
e

R

Outline Classes C++1/0
0000000000000

Classes
Header file
Implementation File
Main Program

C++1/0

CPSC 427, Lecture 4 2/25
e

R

Outline Classes C++1/0
0000000000000

Classes

CPSC 427, Lecture 4 3/25
.

Outline Classes C++1/0
0000000000000

C++ version

We look at the C++ version in some detail.

This will be a whirlwind tour of classes in C++, which we will be
covering in greater detail in the coming lectures.

CPSC 427, Lecture 4 4/25
e

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/03-InsertionSortCpp

Outline Classes C++1/0
©000000000000
: :
Header file
: :

Header file format

A class definition goes into a header file.

The file starts with include guards.

#ifndef DATAPACK_H
#define DATAPACK_H
// rest of header
#endif

or the more efficient but non-standard replacement:

#pragma once // rest of header

| |
CPSC 427, Lecture 4 5/25

Outline Classes C++1/0
O®00000000000
: :
Header file
: :

Class declaration
Form of a simple class declaration.
class DataPack {

private: //
// data member declarations, like struct in C

public: //
// constructor and destructor for the class
DataPack() {...}
~“DataPack() {...}
¥
//
// public function methods

};

| |
CPSC 427, Lecture 4 6/25

00

Outline Classes C++1/0
00®0000000000
: :
Header file
: :

class DataPack

class DataPack {

3

defines a new class named DataPack.

By convention, class names are capitalized.

Note the required semicolon following the closing brace.

If omitted, here's the error comment:

../datapack.hpp:11: error: new types may not be defined in a return type
../datapack.hpp:11: note: (perhaps a semicolon is missing after the
definition of 'DataPack’)

../datapack.cpp:12: error: two or more data types in declaration of
'readData’

| |
CPSC 427, Lecture 4 7/25

00

Outline Classes C++1/0
0008000000000
: :
Header file
: :

Class elements

A class contains declarations for data members and function
members (or methods).

v

» int n; declares a data member of type int.

» int getN(){ return n; } is a complete member function
definition.

» void sortData(); declares a member function that must be
defined elsewhere.

» By convention, member names begin with lower case letters
and are written in camelCase.

| |
CPSC 427, Lecture 4 8/25

00

Outline Classes C++1/0
0000®00000000
: :
Header file
: :

Inline functions

» Methods defined inside a class are inline (e.g., getNQ)).
> Inline functions are recompiled for every call.

> Inline avoids function call overhead but results in larger code
size.

» inline keyword makes following function definition inline.

» Inline functions must be defined in the header (.hpp) file.
Why?

| |
CPSC 427, Lecture 4 9/25

Outline Classes C++1/0

[e]e]e]e]e] lelelelelelele}
:

Header file
Visibility
» The visibility of declared names can be controlled.
» public: declares that following names are visible outside of

the class.

> private: restricts name visibility to this class.

v

Public names define the interface to the class.

v

Private names are for internal use, like local names in
functions.

CPSC 427, Lecture 4 10/25

00

Outline Classes C++1/0
0000008000000
: :

Header file
: :

Constructor

A constructor is a special kind of method.
Automatically called whenever a new class instance is allocated.

Job is to initialize the raw data storage of the instance to become
a valid representation of an initial data object.

In dataPack example, store must point to storage of max bytes,
n of which are currently in use.

CPSC 427, Lecture 4 11/25
00

Outline Classes C++1/0

0000000 e00000
: :

Header file
Constructor
DataPack(){
n = 0;
max = LENGTH;
store = new BT[max]; cout << "Store allocated.\n";
readData();
}

new does the job of malloc() in C.

cout is name of standard output stream (like stdout in C).
<< is output operator.

readData() is private function to read data set from user.
Design question: Why is this a good idea?

: :
CPSC 427, Lecture 4 12/25

Outline Classes C++1/0

[e]e]e]ele]ele]e] lelelele}
:

Header file
:

Destructor

A destructor is a special kind of method.

Automatically called whenever a class instance about to be
deallocated.

Job is to perform any final processing of the data object and to
return any previously-allocated storage to the system.

In dataPack example, the storage block pointed to by store must
be deallocated.

CPSC 427, Lecture 4 13/25

00

Outline Classes C++1/0
0000000008000
: :
Header file
: :

Destructor

“DataPack(){

delete[] store;

cout << "Store deallocated.\n";
}

Name of the destructor is class name prefixed with ~.

delete does the job of free() in C.

Empty square brackets [] are for deleting an array.

: :
CPSC 427, Lecture 4 14/25

00

Outline Classes C++1/0

0000000000800
:

Implementation File
:

dataPack.cpp

Ordinary (non-inline) functions are defined in a separate
implementation file.

Function name must be prefixed with class name followed by :: to
identify which class’s member function is being defined.

Example: DataPack: :readData() is the member function
readData() declared in class DataPack.

CPSC 427, Lecture 4 15/25

00

Outline Classes C++1/0
0000000000080
: :
Implementation File
: :

File 1/O

C++ file 1/O is described in Chapter 3 of textbook. Please read it.

ifstream infile(filename); creates and opens an input
stream infile.

The Boolean expression !infile is true if the file failed to open.

This works because of a built-in coercion from type ifstream to
type bool. (More later on coercions.)

readData() has access to the private parts of class dataPack and
is responsible for maintaining their consistency.

: :
CPSC 427, Lecture 4 16/25
00

Outline Classes C++1/0
0000000000000
: :
Main Program
: :

main.cpp

As usual, the header file is included in each file that needs it:
#include "datapack.hpp"

banner () ; should be the first line of every program you write for
this course. It helps debugging and identifies your output.
(Remember to modify tools.hpp with your name as explained in
Chapter 1 of textbook.)

Similarly, bye () ; should be the last line of your program before
the return statement (if any).

The real work is done by the statements DataPack theData; and
theData.sortData() ;. Everything else is just printout.

: :
CPSC 427, Lecture 4 17/25

R

Outline Classes C++1/0
0000000000000

C++ 1/0

CPSC 427, Lecture 4 18/25
00

Outline Classes C++1/0
0000000000000

Streams
C++ 1/0 is done through streams.

Four standard streams are predefined:
» cin is the standard input stream.
» cout is the standard output stream.
» cerr is the standard output stream for errors.
» clog is the standard output stream for logging.

Data is read from or written to a stream using the input and
output operators:

>> (for input). Example: cin >> x >> y;
<< (for output). Example: cout << "x=" << x;

CPSC 427, Lecture 4 19/25
00

Outline Classes C++1/0
0000000000000

Opening and closing streams

You can use streams to read and write files.

Some ways of opening a stream.
> ifstream fin ("myfile.in"); opens stream fin for
reading. This implicitly invokes the constructor ifstream(
"myfile.in").
» ifstream fin; creates an input stream not associated with
a file. fin.open("myfile.in"); attaches it to a file.

Can also specify open modes.
To test if fin failed to open correctly, write if (!'fin) {...}.

To close, use fin.close() ;.

:
CPSC 427, Lecture 4 20/25

Outline Classes C++1/0
0000000000000

Reading data

Simple forms. Assume fin is an open input stream.
» fin >> x >> y >> z; reads three fields from fin into x,
y, and z.
» The kind of input conversion depends on the types of the
variables.
> No need for format or &.
» Standard input is called cin.

» Can read a line into a buffer with fin.get (buf, buflen) ;.
This function stops before the newline is read. To continue,
one must move past the newline with a simple fin.get(ch);
or fin.ignore();.

: :
CPSC 427, Lecture 4 21/25

Outline

Classes C++1/0
0000000000000

Writing data

Simple forms. Assume fout is an open output stream.

>

>

fout << x << y << z; writes x, y, and z into fout.

The kind of output conversion depends on the types of the
variables or expressions..

Standard output is called cout. Other predefined output
streams are cerr and clog. They are usually initialized to
standard output but can be redirected.

Warning: The eclipse debug window does not obey the proper
synchronization rules when displaying cout and cerr. Rather,
the output lines are interleaved arbitrarily. In particular, a line
written to cerr after a line written to cout can appear
before in the output listing. This won't happen with a Linux
terminal window.

CPSC 427, Lecture 4 22/25

Outline Classes C++1/0
0000000000000

Manipulators

Manipulators are objects that can be arguments of >> or << but do
not necessarily produce data.
Example: cout << hex << x << y << dec << z << endl;

» Prints x and y in hex and z in decimal.
» After printing z, a newline is printed and the output stream is
flushed.

Manipulators are used in place of C formats to control input and
output formatting and conversions.

: :
CPSC 427, Lecture 4 23/25

Outline Classes C++1/0
0000000000000

End of file and error handling

[/O functions set status flags after each |/O operation.
bad means there was a read or write error on the file 1/O.

fail means the data was not appropriate to the field, e.g.,
trying to read a non-numeric character into a
numeric variable.

eof means that the end of file has been reached.
good means that the above three bits are all off.

The whole state can be read with one call to rdstate().

: :
CPSC 427, Lecture 4 24/25

Outline Classes C++1/0
0000000000000

Status functions

Functions are also provided for testing useful combinations of
status bits.

» good() returns true if the good bit is set.

» bad () returns true if the bad bit is set.
This is not the same as !good ().
» fail() returns true if the bad bit or the fail bit is set.

» eof () returns true if the eof bit is set.

As in C, correct end of file and error checking require paying close
attention to detail of exactly when these state bits are turned on.
To continue after a bit has been set, must call clear () to clear it.

: :
CPSC 427, Lecture 4 25/25

	Classes
	Header file
	Implementation File
	Main Program

	C++ I/O

