
Outline C++ I/O End of File and I/O Errors Functions and Methods

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 5
February 2, 2016

CPSC 427, Lecture 5 1/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

C++ I/O (continued)

End of File and I/O Errors

Functions and Methods
Parameters
Choosing Parameter Types
The Implicit Argument

CPSC 427, Lecture 5 2/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

C++ I/O (continued)

CPSC 427, Lecture 5 3/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Print methods in new classes

Each new class should have a print() function that writes out
the object in human-readable form.

print() takes a stream reference as an argument that specifies
which stream to write to.

The prototype for such a function should be:
ostream& print(ostream& out) const;

If sq is an object of the new class, we can print sq by writing
sq.print(out);

Note that const prevents print() from modifying the object that
it is printing.

CPSC 427, Lecture 5 4/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Extending the I/O operators

While sq.print() allows us to print sq, we’d rather do it in the
familiar way

out << sq;.

Fortunately, C++ allows one to extend the meaning of << in this
way. Here’s how.

inline

ostream& operator<<(ostream& out, const Square& sq) {

return sq.print(out);

}

Since this function is inline, it should go in the header file for class
Square.

CPSC 427, Lecture 5 5/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Remarks on operator extensions

I Every definable operator has an associated function.
The function for << is operator<<().

I Extending << is simply a matter of defining the corresponding
method for a new combination of parameters.

I In this case, we want to allow out << sq, where out has
type ostream& and sq has type const Square&.

I The use of reference parameters prevents copying.

I The const is a promise that operator<< will not change sq.

CPSC 427, Lecture 5 6/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Why << returns a stream reference

Both print() and operator<<() return a stream reference.

This allows compound constructs such as
out << "The square is: " << sq << endl;

By left associativity of <<, this is the same as
((out << "The square is: ") << sq) << endl;

CPSC 427, Lecture 5 7/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Must it be inline?

If one wants operator<<() to be an ordinary function, the
following changes are needed:

1. Declare the operator in header file Square.hpp:

ostream& operator<<(ostream& out, const Square& sq);

2. Define the operator in code file Square.cpp:

ostream& operator<<(ostream& out, const Square& sq) {

return sq.print(out);

}

CPSC 427, Lecture 5 8/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

End of File and I/O Errors

CPSC 427, Lecture 5 9/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

What eof means

Detecting and properly handling end of file is one of the most
confusing things in C++.

The I/O stream has status flags associated with it. The eof flag is
turned on when the stream attempts to read beyond the end of the
file.

The eof flag may or may not be on after the last byte of the file
has been read and returned to the user.

CPSC 427, Lecture 5 10/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

When eof is turned on

Whether eof is on depends on whether the current input operation
can complete without looking at the next byte.

I If it needs the lookahead to detect completion, then it will try
to read beyond the end of the file and will turn on the eof bit.

I If it doesn’t need the lookahead, then the eof flag will remain
off.

CPSC 427, Lecture 5 11/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Reading an int

What happens depends on the kind of read request. Consider what
happens with cin >> x, where x is an int.

1. Bytes are read one at a time until either there are no more to
read or a non-whitespace byte is read. If the first happens, no
data is read into x, and both the fail and the eof flags are
turned on (and the good flag is turned off).

2. If step 1 ended by finding a non-whitespace byte, then the
stream checks if it is a character that can begin an integer.
The ones that can are +, -, 0, 1, ..., 9. If it is not one
of these, the fail flag is set, the eof flag is off, and nothing
is stored into x.

CPSC 427, Lecture 5 12/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Reading an int (cont.)

3. If an allowable number-starting character is found, then
reading continues character by character until a character is
found that can not be a part of the number currently being
read.
Reading then stops, the characters read so far are converted
to an int and stored into x. The fail flag is off since a
number was successfully read into x. The eof flag will be on
iff the reading was stopped by attempting to read past the
end of the file.

CPSC 427, Lecture 5 13/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Examples
The following examples show the remaining bytes in the file, where
 represents any whitespace character such as space or newline.

1. File contents: 123

An attempt to read past the end of the file is made since
otherwise one can’t know that the number is 123 is complete.
good and fail are off and eof is on.

2. File contents: 123

eof will be off and the next byte to be read is the one
following the 3 that stopped the reading. good is on and
fail and eof are off.

3. File contents:

No number is present. Step 1 reads and discards the
whitespace and attempts to read beyond the end of file. good

is off and fail and eof are on.

CPSC 427, Lecture 5 14/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

End of file and error handling

There is a fourth status flag also, bad.

I/O functions set status flags after each I/O operation.

bad means there was a read or write error on the file I/O.

fail means the data was not appropriate to the field, e.g.,
trying to read a non-numeric character into a
numeric variable.

eof means that the end of file has been reached.

good means that the above three bits are all off.

The whole state can be read with one call to rdstate().

CPSC 427, Lecture 5 15/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Status functions

Functions are also provided for testing useful combinations of
status bits.

I good() returns true if the good bit is set.

I bad() returns true if the bad bit is set.

This is not the same as !good().

I fail() returns true if the bad bit or the fail bit is set.

I eof() returns true if the eof bit is set.

As in C, correct end of file and error checking require paying close
attention to detail of exactly when these state bits are turned on.
To continue after a bit has been set, must call clear() to clear it.

CPSC 427, Lecture 5 16/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Common file-reading mistakes

We now talk about the practical issue of how to write your code to
correctly handle errors and end of file.

Two programming errors are common when reading data from a
file:

I Failing to read the last number.

I Reading the last number twice.

CPSC 427, Lecture 5 17/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Failing to read the last number

good is not always true after a successful read.

If the last number is not followed by whitespace, then after it is
successfully read, eof is true and good is false. If one incorrectly
assumes this means no data was read, the last number will not be
processed.

Here’s a naive program that illustrates this problem:
do {

in >> x;

if (!in.good()) break;

cout << " " << x;

}

while (!in.eof());

cout << endl;

On input file containing 1 2 3, it will print 1 2.

CPSC 427, Lecture 5 18/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Reading the last number twice

eof is not always true after the last number is read.

If the last number is followed by whitespace, then after it is read,
eof will still be false. If one incorrectly assumes it is okay to keep
reading as long as eof is false, the last read attempt will fail and
the input variable won’t change.

Here’s a naive program that illustrates this problem:

while (!in.eof()) {

in >> x;

cout << " " << x;

}

cout << endl;

On input file containing 1 2 3 , it will print 1 2 3 3.

CPSC 427, Lecture 5 19/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

How to read all numbers in a file

Here’s a correct way to correctly read and process all of the
numbers. Instead of printing them out, it adds them up in the
register s.

int s=0;

int x;

do {

in >> x;

if (!in.fail()) s+=x; // got good data

} while (in.good());

if (!in.eof()) throw Fatal("I/O error or bad data");

CPSC 427, Lecture 5 20/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Functions and Methods

CPSC 427, Lecture 5 21/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Parameters

Call by value

Like C, C++ passes explicit parameters by value.

void f(int y) { ... y=4; ... };

...

int x=3;

f(x);

I x and y are independent variables.

I y is created when f is called and destroyed when it returns.

I At the call, the value of x (=3) is used to initialize y.

I The assignment y=4; inside of f has no effect on x.

CPSC 427, Lecture 5 22/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Parameters

Call by pointer
Like C, pointer values (which I call reference values) are the
things that can be stored in pointer variables.
Also like C, references values can be passed as arguments to
functions having corresponding pointer parameters.

void g(int* p) { ... (*p)=4; ... };

...

int x=3;

g(&x);

I p is created when g is called and destroyed when it returns.

I At the call, the value of &x, a reference value, is used to
initialize p.

I The assignment (*p)=4; inside of g changes the value of x.

CPSC 427, Lecture 5 23/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Parameters

Call by reference

C++ has a new kind of parameter called a reference parameter.

void g(int& p) { ... p=4; ... };

...

int x=3;

g(x);

I This does same thing as previous example; namely, the
assignment p=4 changes the value of x.

I Within the body of g, p is a synonym for x.

I For example, &p and &x are identical reference values.

CPSC 427, Lecture 5 24/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Parameters

I/O uses reference parameters

I The first argument to << has type ostream&.

I cout << x << y; is same as (cout << x) << y;.

I << returns a reference to its first argument, so this is also the
same as

cout << x;

cout << y;

CPSC 427, Lecture 5 25/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Choosing Parameter Types

How should one choose the parameter type?

Parameters are used for two main purposes:

I To send data to a function.

I To receive data from a function.

CPSC 427, Lecture 5 26/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Choosing Parameter Types

Sending data to a function: call by value

For sending data to a function, call by value copies the data
whereas call by pointer or reference copies only an address.

I If the data object is large, call by value is expensive of both
time and space and should be avoided.

I If the data object is small (eg., an int or double), call by
value is cheaper since it avoids the indirection of a reference.

I Call by value protects the caller’s data from being
inadvertantly changed.

CPSC 427, Lecture 5 27/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Choosing Parameter Types

Sending data to a function: call by reference or pointer

Call by reference or pointer allows the caller’s data to be changed.
Use const to protect the caller’s data from inadvertane change.

Ex: int f(const int& x) or int g(const int* xp).

Prefer call by reference to call by pointer for input parameters.

Ex: f(234) works but g(&234) does not.

Reason: 234 is not a variable and hence can not be the target of a
pointer.
(The reason f(234) does work is a bit subtle and will be
explained later.)

CPSC 427, Lecture 5 28/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

Choosing Parameter Types

Receiving data from a function

An output parameter is expected to be changed by the function.

Both call by reference and call by pointer work.

Call by reference is generally preferred since it avoids the need for
the caller to place an ampersand in front of the output variable.

Declaration: int f(int& x) or int g(int* xp).

Call: f(result) or g(&result).

CPSC 427, Lecture 5 29/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

The Implicit Argument

The implicit argument

Every call to a class member function has an implicit argument,
which is the object written before the dot in the function call.

class MyExample {

private:

int count; // data member

public:

void advance(int n) { count += n; }

...

};

...

MyExample ex;

ex.advance(3);

Increments ex.count by 3.

CPSC 427, Lecture 5 30/31

Outline C++ I/O End of File and I/O Errors Functions and Methods

The Implicit Argument

this

The implicit argument is passed by pointer.

In the call ex.advance(3), the implicit argument is ex, and a
pointer to ex is passed to advance().

The implicit argument can be referenced directly from within a
member function using the keyword this.

Within the definition of advance(), count and this->count are
synonymous.

CPSC 427, Lecture 5 31/31

	C++ I/O (continued)
	End of File and I/O Errors
	Functions and Methods
	Parameters
	Choosing Parameter Types
	The Implicit Argument

