
Outline Notes on PS2 Storage Management

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 8
February 11, 2016

CPSC 427, Lecture 8 1/17



Outline Notes on PS2 Storage Management

Notes on PS2

Storage Management

CPSC 427, Lecture 8 2/17



Outline Notes on PS2 Storage Management

Notes on PS2

CPSC 427, Lecture 8 3/17



Outline Notes on PS2 Storage Management

vector

vector<T> is one kind of container in the standard C++ library.

I It is used to store a collection of objects of type T.

I It is like the C array T myvec[] except that it grows as
needed, manages its own storage, and never overflows.

I T can be any copyable type or class.

I You will be using vector<string> and vector<Score>.

I By default, a vector starts empty and grows as needed.

I Use myvec.push back(item) to append item to the end of
vector myvec.

I myvec.size() returns the number of items in myvec.

I Vectors support many other operations, including subscript.

I You must #include <vector> to use it.

CPSC 427, Lecture 8 4/17



Outline Notes on PS2 Storage Management

Algorithms

The standard C++ library contains many useful algorthms.

To sort an object vsc of type vector<Score>, write
sort(vsc.begin(), vsc.end()); 1

You must somehow tell sort how to compare two scores. Do this
by defining

bool operator<(const Score& rhs) const;

in class Score.

It should return true if *this should come before rhs in the
sorted order and false otherwise.

You must #include <algorithm> to use the sort functions.

1stable sort() can be used instead. It’s guaranteed not to reorder equal
elements.

CPSC 427, Lecture 8 5/17



Outline Notes on PS2 Storage Management

Delegation

Delegation is when a function passes control to a delegate
function in another class to carry out a task for which the other
class is the expert.

In the assignment, both SixOh and Score should have print()

functions (and corresponding operator<<() extensions).

When SixOh::print() wants to print a Score object sc, it
should delegate that task to Score::print() by call sc.print()
(or do out << sc;) rather than attempting to reach into the
Score object to grab the individual data members.

Principle: Don’t talk to strangers.

CPSC 427, Lecture 8 6/17



Outline Notes on PS2 Storage Management

Manipulators

Manipulators are a class of objects that, when sent to a stream,
change the behavior of the stream.

setw() sets the output field width to its argument, useful for
getting numbers to line up in a column.

Example:

int x = 23;

cout << setw(5) << x;

prints 23 in a field of width 5, producing the printed output 23.
(Here, represents a space.)

To use manipulators, you must #include <iomanip>.

CPSC 427, Lecture 8 7/17



Outline Notes on PS2 Storage Management

C and C++ strings

A C string is a null-terminated sequence of characters, stored in a
char array, e.g., t u r k e y \0

A C++ string is an object of type string, defined by invoking
#include <string>. Internally, it has a buffer containing a
C-string along with its current length and the length of the buffer.

C++ strings are not length limited but grow as needed. The
implementation takes care of managing storage and preventing the
buffer overruns so common with C strings.

The C++ programmer needs to be able to deal with both kinds of
strings. Many system calls require C-strings as paramenters or
produce C-strings as results.

CPSC 427, Lecture 8 8/17



Outline Notes on PS2 Storage Management

Converting between C and C++ strings

Let str be a C++ string. Then str.data() returns a pointer of
type const char* to the internal buffer that contains the
C-string. (The older form str.c str() also works.)

Given a C string s, one can construct a new C++ string initialized
to s by using the string(s) constructor, e.g., string str(s) or
new string(s).

For an existing C++ string str, one can use assignment to store a
C string s into it, e.g., str = s;.

CPSC 427, Lecture 8 9/17



Outline Notes on PS2 Storage Management

Range-based loops

C++ now has a kind of “for each” loop called a range-based loop.

For example, if vec is a vector of element-type T, then one can
iterate through vect by writing

for (const T& t : vec) { ... }.

For each element in vec, the name t is bound to the element and
the loop body is executed.

For example, for (const T& t : vec) { cout << t; } prints
each element of vec.

CPSC 427, Lecture 8 10/17



Outline Notes on PS2 Storage Management

String streams

A string stream is a kind of stream that reads from or writes to a
string rather than from/to a device or file.

To the programmer, a string stream can be used just like any other
stream. For example, to read an int x from an input string
stream iss, one simply writes iss >> x.

Flag eof is set when the stream attempts to read beyond the end
of the string. Flag fail is set if a requested data conversion fails,
e.g., requesting to read an int when the next non-whitespace
character in the stream is not a digit or ’+’ or ’-’.

To use a string stream, you need to #include <sstream>. The
input string stream class is called istringstream.

CPSC 427, Lecture 8 11/17



Outline Notes on PS2 Storage Management

Reading a file a line at a time

Reading and processing a file line by line makes it easier to identify
the location of bad data in a file and to skip a bad data record and
go on (when that is deemed to be desirable).

String streams can be used for line-by-line file reading as follows:

1. Read a line from the input file into a string textline and
check for success.

2. Create an istringstream iss initialized with textline.

3. Read and parse the data from iss. Use iss.good(),
iss.fail(), and iss.eof() as usual in order to detect bad
data and know when to stop.

For PS2, you should read and process the .csv input file a line at
a time.

CPSC 427, Lecture 8 12/17



Outline Notes on PS2 Storage Management

Storage Management

CPSC 427, Lecture 8 13/17



Outline Notes on PS2 Storage Management

Objects and storage

Objects have several properties:

I A type. This determines the size and encoding of the
allowable data values.

I A name. This is one way to access the object.

I A storage area. This is a block of memory big enough to
hold any legal value of the specified type.

I A lifetime. This is the time span between an object’s creation
and its demise. Data left behind in an object’s storage area
after it has died is unpredictable and shouldn’t be used.

I A storage class. This determines the lifetime of the object,
where the storage area is located in memory, and how it is
managed.

CPSC 427, Lecture 8 14/17



Outline Notes on PS2 Storage Management

Example of an object

Declaration: int n = 123;

This declares an object of type int, name n, and an int-sized
storage area, which will be initialized to 123. It’s lifetime begins
when the declaration is executed and ends on exit from the
enclosing block. The storage class is auto (stack).

The unary operator sizeof returns the storage size (in bytes).

sizeof can take either an expression or a parentheses-enclosed
type name, e.g., sizeof n or sizeof(int).

In case of an expression, the size of the result type is returned,
e.g., sizeof (n+2.5) returns 8, which is the size of a double on
my machine.

CPSC 427, Lecture 8 15/17



Outline Notes on PS2 Storage Management

Name

An object may have one or more names, or none at all!

Not all names are created equal. A name may exist but not be
visible in all contexts.

I It is not visible from outside of the block in which it is defined.

I For a class data member, the name’s visibility may be
restricted, e.g., by the private keyword.

I An object may have more than one name. This is called
aliasing.

I An object may have no name at all. Such an object is called
anonymous. It can only be accessed via a pointer or
subscript.

CPSC 427, Lecture 8 16/17



Outline Notes on PS2 Storage Management

References
A name can be given to an anonymous object at a later time.

#include <iostream>

using namespace std;

int main() {

int* p;

p = new int; // Creates an anonymous int object

*p = 3; // Store 3 into the anonymous object

cout << *p << endl;

int& x = *p; // Give the object the name x

x = 4;

cout << *p << " " << x << endl;

}

/* Output

3

4 4

*/

CPSC 427, Lecture 8 17/17


	Notes on PS2
	Storage Management

