e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 10
February 18, 2016

CPSC 427, Lecture 10 1/27
00

e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Carryover from Lecture 9

Introduction to the
C++ Standarad Library

Handling Circularly Dependent Classes

References

CPSC 427, Lecture 10 2/27

00

e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Carryover from Lecture 9

CPSC 427, Lecture 10 3/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Finish analysis of 09-BarGraph demo

v

graph.hpp
graph.cpp
row.hpp

v

v

> TOoW.cCpp

v

rowNest.hpp
» item.hpp

: :
CPSC 427, Lecture 10 4/27

00

http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/09-BarGraph/

Outline

Carryover from Lecture 9 Standard Library Circularity References
:

graph.hpp

Points to note:

> Class Graph aggregates 11 bars Row.

» The Row array is created by the constructor and deleted by
the destructor.

» insert() is a private function. It creates an Item and inserts
it into one of the Rows.

» instructions() is a static inline function. This shows how
it is defined.

» instructions() could also be made out-of-line in the usual
way, but the word static must not be given in the definition
in the .cpp file; only in the declaration in the .hpp file.

| CPSC 427, Lecture 10 5/27 |

00

Outline Carryover from Lecture 9 Standard Library Circularity References

graph. cpp

Points to note:

» The for-loop in the constructor does not properly handle
error conditions and can get into an infinite loop.
You should test yourself to be sure you know how to fix this
problem.

» The constructor has an allocation loop. The destructor has a
corresponding deallocation loop.

» bar[index]->insert(initials, score);
shows the use of a subscript and a pointer dereferencing in
the same statement.

» Why do we need the * in
out << xbar[k] <<"\n";

: :
CPSC 427, Lecture 10 6/27

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

row.hpp

Points to note:

» This file contains two tightly coupled classes, Cell and Row.
» The line friend class Row in Cell gives Row permission to
access private data and methods of Cell.
» A class can give friendship. It cannot take friendship.
» The Cell constructor combines two operations that could be
separated:
1. It creates a new Item from a C-string and an integer;
2. It creates a new fully initialized Cell containing as data a
pointer to the newly-created Item.
» A Row has a head that points to the first Cell in a linked list.

: :
CPSC 427, Lecture 10 7/27

Outline Carryover from Lecture 9 Standard Library Circularity References

Tow.cpp

Points to note:

» There is some clever coding in the Row constructor.
Is this a good design?

» The destructor in Row deletes the entire linked list of Cells.
Why shouldn't this be done in the Cell destructor?

> insert creates a new Cell and puts it on the linked list.
Where does it go?

» In Row: :print (), the code reaches through Cell into
Item: :print ().
This violates the rule, “Don’t talk to strangers.”
» Is it okay in this context?
» Why or why not?
» What would the alternative be? [Hint: Delegation.]

CPSC 427, Lecture 10 8/27

Outline Carryover from Lecture 9 Standard Library Circularity References
:

rowNest . hpp

This is an alternative definition of class Row with the same public
interface and behavior but different internal structure.

Points to note:

> In row.hpp, Cell is a top-level class in which everything is
private. The friend declaration allows Row to use it.

> In rowNest.hpp, Cell is declared as a private class inside of
Row, but everything in Row is public. Since only Row can
access the class name, nobody else can access it.

> In all other respects, row.hpp and rowNest.hpp are identical.
> To determine which is used, change the #include in
graph.hpp.

:
CPSC 427, Lecture 10 9/27

Outline Carryover from Lecture 9 Standard Library Circularity References

item.hpp

This is a data class. In C, one would use a struct, but C++
permits tighter semantic control.

Points to note:

» The fields are private. They are initialized by the constructor
and never changed after that.

> The only use made of those fields is by print (). Hence there
is no need even for getter functions.

» Item could have been defined as a subclass of class Row.
What are the pros and cons of such a decision?

CPSC 427, Lecture 10 10/27

e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Introduction to the
C++ Standarad Library

CPSC 427, Lecture 10 11/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

A bit of history

C++ standardization.
» C++ standardization began in 19809.

» ISO and ANSI standards were issued in 1998, nearly a decade
later.

» The standard covers both the C++ language and the standard
library (everything in namespace std).

» The standardization process continues as the language evolves
and new features are added.

The standard library was derived from several different sources.

STL (Standard Template Library) portion of the C++ standard was
derived from an earlier STL produced by Silicon Graphics (SGI).

: :
CPSC 427, Lecture 10 12/27

Outline Carryover from Lecture 9 Standard Library Circularity References
:

Some useful classes

Here are some useful classes that you have already seen:

> string — a character string designed to act as much as
possible like the primitive data types such as int and double.

> iostream, ifstream, ofstream — buffered reading and
writing of character streams.

> istringstream — permits input from an in-memory
string-like object.

» vector<T> — creates a growable array of objects of type T,
where T can be any type.

:
CPSC 427, Lecture 10 13/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References

Class stringstream

A stringstream object (in the default case) acts like an ostream
object.

It can be used just like you would use cout.

The characters go into an internal buffer rather than to a file or
device.

The buffer can be retrieved as a string using the str() member
function.

: :
CPSC 427, Lecture 10 14/27

Outline Carryover from Lecture 9 Standard Library Circularity References

stringstream example

Example: Creating a label from an integer.

#include <sstream>

int examScore=94;
stringstream ss;

string label;

ss << "Score=" << examScore;
label = ss.str();

cout << label << endl;

This prints Score=94.

:
CPSC 427, Lecture 10 15/27

Outline Carryover from Lecture 9 Standard Library Circularity References
:

vector

vector<T> myvec is something like the C array T myvec[].
The element type T can be any primitive, object, or pointer type.

One big difference is that a vector starts empty (in the default
case) and it grows as elements are appended to the end.
Useful functions:

» myvec.push_back(item) appends item to the end.

» myvec.size() returns the number of objects in myvec

» myvec [k] returns the object in myvec with index k (assuming
it exists.) Indices run from 0 to size()-1.

:
CPSC 427, Lecture 10 16/27

00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Other operations on vectors

Other operations include creating an empty vector, inserting,
deleting, and copying elements, scanning through the vector, and
so forth.

Liberal use is made of operator definitions to make vectors behave
as much like other C++ objects as possible.

Vectors implement value semantics, meaning type T objects are
copied freely within the vectors.

If copying is a problem, store pointers instead.

CPSC 427, Lecture 10 17/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
:

vector examples

You must #include <vector>.
Elements can be accessed using standard subscript notion.

Inserting at the beginning or middle of a vector takes time O(n).

Example:

vector<int> tb1(10); // creates length 10 vector of int
tbl[5] = 7; // stores 7 in slot #5

cout << tbl[5]; // prints 7

tbl[10] = 4; // illegal, but not checked!!!
cout << tbl.at(5); // prints 7

tbl.at(10) = 4; // illegal and throws an exception
tbl.push_back(4); // creates tbl[10] and stores 4

cout << tbl.at(10); // prints 4

: :
CPSC 427, Lecture 10 18/27
00

e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Handling Circularly Dependent Classes

CPSC 427, Lecture 10 19/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Tightly coupled classes

Class B depends on class A if B refers to elements declared within
class A or to A itself.

The class B definition must be read by the compiler after reading A.

This is often ensured by putting #include "A.hpp" at the top of
file B.hpp.

A pair of classes A and B are tightly coupled if each depends on the
other.

It is not possible to have each read after the other.

Whichever the compiler reads first will cause the compiler to
complain about undefined symbols from the other class.

: :
CPSC 427, Lecture 10 20/27

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Example: List and Cell

Suppose we want to extend a cell to have a pointer to a sublist.

class Cell {
int data;
List* sublist;
Cell* next;

};

class List {
Cell* head;

};

This won't compile, because List is used (in class Cell) before
it is defined. But putting the two class definitions in the opposite
order also doesn't work since then Cell would be used (in class
List) before it is defined.

: :
CPSC 427, Lecture 10 21/27

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Circularity with #include

Circularity is less apparent when definitions are in separate files.

File 1ist.hpp:
#pragma once
#include "cell.hpp"
class List { ... };

File cell.hpp:
#pragma once
#include "list.hpp"
class Cell { ... };

File main. cpp:

#include "list.hpp"
#include "cell.hpp"
int main() { ... 2}

CPSC 427, Lecture 10 22/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

What happens?

In this example, it appears that class List will get read before
class Cell since main.cpp includes list.hpp before cell.hpp.

Actually, the opposite occurs. The compiler starts reading
list.hpp but then jumps to cell.hpp when it sees the #include
"cell.hpp" line.

It jJumps again to 1ist.hpp when it sees the #include
"list.hpp" line in cell.hpp, but this is the second attempt to
load 1ist.hpp, so it only gets as far as #pragma once. It then
resumes reading cell.hpp and processes class Cell.

When done with cell.hpp, it resumes reading 1ist.hpp and
processes class List.

: :
CPSC 427, Lecture 10 23/27

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Resolving circular dependencies

Several tricks can be used to allow tightly coupled classes to
compile. Assume A.hpp is to be read first.

1. Suppose the only reference to B in A is to declare a pointer.
Then it works to put a “forward” declaration of B at the top
of A.hpp, for example:

class B;
class A { Bx bp; ... }

2. If a function defined in A references symbols of B, then the
definition of the function must be moved outside the class and
placed where it will be read after B has been read in, e.g., in
the A.cpp file.

3. If the function needs to be inline, this is still possible, but it's
much trickier getting the inline function definition in the right
place.

CPSC 427, Lecture 10 24/27

00

e
Outline Carryover from Lecture 9 Standard Library Circularity References
: :

References

CPSC 427, Lecture 10 25/27
00

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Reference types

Recall: Given int x, two types are associated with x: an L-value
(the reference to x) and an R-value (the type of its values).

C++ exposes this distinction through reference types and
declarators.

A reference type is any type T followed by &, i.e., T&.

A reference type is the internal type of an L-value.

Example: Given int x, the name x is bound to an L-value of type
int&, whereas the values stored in x have type int

This generalizes to arbitrary types T: If an L-value stores values of
type T, then the type of the L-value is T&.

: :
CPSC 427, Lecture 10 26/27

Outline Carryover from Lecture 9 Standard Library Circularity References
: :

Reference declarators

The syntax T& can be used to declare names, but its meaning is
not what one might expect.

int x = 3; // Ordinary int variable
int& y = x; // yis an alias for x
y = 4; // Now x ==

The declaration must include an initializer.

The meaning of int& y = x; is that y becomes a name for the
L-value x.

Since x is simply the name of an L-value, the effect is to make y
an alias for x.

For this to work, the L-value type (int&) of x must match the
type declarator (int&) for y, as above.

: :
CPSC 427, Lecture 10 27/27
00

	Carryover from Lecture 9
	Introduction to the C++ Standarad Library
	Handling Circularly Dependent Classes
	References

