
Outline Pointer Arithmetic Bells and Whistles Classes

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 12
February 25, 2016

CPSC 427, Lecture 12 1/12

Outline Pointer Arithmetic Bells and Whistles Classes

Pointer Arithmetic

Bells and Whistles

Classes

CPSC 427, Lecture 12 2/12

Outline Pointer Arithmetic Bells and Whistles Classes

Pointer Arithmetic

CPSC 427, Lecture 12 3/12

Outline Pointer Arithmetic Bells and Whistles Classes

Meaning

Addition and subtraction of a pointer and an integer gives a new
pointer.

int a[10];

int* p;

int* q;

p = &a[3];

q = &a[5];

// q-p == 2

// p+1 == &a[4];

// q-5 == &a[0];

// What is q-6?

CPSC 427, Lecture 12 4/12

Outline Pointer Arithmetic Bells and Whistles Classes

Implementation

Pointers are represented internally by memory addresses.

The meaning of p+k is to add k*sizeof *p to the address stored
in p.

Example: Suppose p points to a double stored at memory
location 500, and suppose sizeof(double) == 8. Then p+1 is a
pointer to memory location 508.

508 is the memory location of the first byte following the 8 bytes
reserved for the double at location 500.

If p points to an element of an array of double, then p+1 points
to the next element of that array.

CPSC 427, Lecture 12 5/12

Outline Pointer Arithmetic Bells and Whistles Classes

Bells and Whistles

CPSC 427, Lecture 12 6/12

Outline Pointer Arithmetic Bells and Whistles Classes

Optional parameters

The same name can be used to name several different member
functions if the signatures (types and/or number of parameters)
are diffent. This is called overloading.

Optional parameters are a shorthand way to declare overloading.

Example
int myfun(double x, int n=1) { ... }
This in effect declares and defines two methods:
int myfun(double x) {int n=1; ...}
int myfun(double x, int n) {...}

The body of the definition of both is the same.
If called with one argument, the second parameter is set to 1.

CPSC 427, Lecture 12 7/12

Outline Pointer Arithmetic Bells and Whistles Classes

const

const declares a variable (L-value) to be readonly.

const int x;

int y;

const int* p;

int* q;

p = &x; // okay

p = &y; // okay

q = &x; // not okay -- discards const

q = &y; // okay

CPSC 427, Lecture 12 8/12

Outline Pointer Arithmetic Bells and Whistles Classes

const implicit argument

const should be used for member functions that do not change
data members.

class MyPack {

private:

int count;

public:

// a get function

int getCount() const { return count; }

...

};

CPSC 427, Lecture 12 9/12

Outline Pointer Arithmetic Bells and Whistles Classes

Operator extensions

Operators are shorthand for functions.

Example: <= refers to the function operator <=().

Operators can be overloaded just like functions.

class MyObj {

int count;

...

bool operator <=(MyObj& other) const {

return count <= other.count; }

};

Now can write if (a <= b) ... where a and b are of type
MyObj.

CPSC 427, Lecture 12 10/12

Outline Pointer Arithmetic Bells and Whistles Classes

Classes

CPSC 427, Lecture 12 11/12

Outline Pointer Arithmetic Bells and Whistles Classes

What is a class?

I A collection of things that belong together.

I A struct with associated functions.

I A way to encapsulate behavior: public interface, private
implementation.

I A way to protect data integrity, providing world with functions
that provide a read-only view of the data.

I A data type from which objects (instances) can be formed.
We say the instances belong to the class.

I A way to organize and automate allocation, initialization, and
deallocation of storage.

I A way to break a complex problem into manageable,
semi-independent pieces, each with a defined interface.

I A reusable module.

CPSC 427, Lecture 12 12/12

	Pointer Arithmetic
	Bells and Whistles
	Classes

