e
Outline Smart Pointer Demo Goals Time
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 13
March 3, 2016

| |
CPSC 427, Lecture 13 1/17




e
Outline Smart Pointer Demo Goals Time
: :

Smart Pointer Demo

More on Course Goals

Clocks and Time Measurement

CPSC 427, Lecture 13 2/17
00




e
Outline Smart Pointer Demo Goals Time
: :

Smart Pointer Demo

CPSC 427, Lecture 13 3/17
00




Outline Smart Pointer Demo Goals Time

Dangling pointers

Pointers can be used to permit object sharing from different
contexts.

One can have a single object of some type T with many pointers in
different contexts that all point to that object.

:
CPSC 427, Lecture 13 4/17
e




Outline Smart Pointer Demo Goals Time
: :

Problems with shared objects

If the different contexts have different lifetimes, the problem is to
know when it is safe to delete the object.

It can be difficult to know when an object should be deleted.
Failure to delete an object will cause memory leaks.

If the object is deleted while there are still points pointing to it,
then those pointers become invalid. We call these dangling
pointers.

Failure to delete or premature deletion of objects are common
sources of errors in C++.

CPSC 427, Lecture 13 5/17
00




Outline Smart Pointer Demo Goals Time
: :

Avoiding dangling pointers

There are several ways to avoid dangling pointers.
1. Have a top-level manager whose lifetime exceeds that of all of
the pointers take responsibility for deleting the objects.
2. Use a garbage collection. (This is java's approach.)
3. Use reference counts. That is, keep track somehow of the

number of outstanding pointers to an object. When the last
pointer is deleted, then the object is deleted at that time.

CPSC 427, Lecture 13 6/17
00




Outline Smart Pointer Demo Goals Time
: :

Modern C++ Smart Pointers

Modern C++ has three kinds of smart pointers. These are objects
that act very much like raw pointers, but they take responsibility
for managing the objects they point at and deleting them when
appropriate.

» shared ptr

» weak ptr

> unique_ptr
We will discuss them later in the course. For now, we present a
much-simplified version of shared pointer so that you can see the

basic mechanism that underlies all of the various kinds of shared
pointers.

: :
CPSC 427, Lecture 13 7/17




Outline Smart Pointer Demo Goals Time
: :

Smart pointers

We define a class SPtr of reference-counted pointer-like objects.
An SPtr should act like a pointer to a T.
This means if sp is an SPtr, then *sp is a T&.

We need a way to create a smart pointer and to create copies of
them.

Demo 13-SmartPointer illustrates how this can be done.

: :
CPSC 427, Lecture 13 8/17



http://zoo.cs.yale.edu/classes/cs427/2016s/lectures/13-SmartPointer

e
Outline Smart Pointer Demo Goals Time
: :

More on Course Goals

CPSC 427, Lecture 13 9/17
00




Outline Smart Pointer Demo Goals Time
: :

Low-level details

» C++ is a large and complicated language with many quirks
and detailed rules.

» One goal of this course is for you to learn how to deal
effectively with a complex system where it is not feasible to
know everything about it before beginning to use it.

» Low-level details tend to be easy to find in the documentation
once you know what to look for.

» What's important to learn is the overall roadmap of the
language and where to look to find out more.

: :
CPSC 427, Lecture 13 10/17




Outline Smart Pointer Demo Goals Time

Example picky detail

» If you do not supply a constructor for a class, C++
automatically generates a null default constructor for you,
that is, one that takes no parameters and does nothing.

> |If you do define a constructor, the default constructor is not
generated. If you want it, you then need to explicitly define it,
eg.,

MyClass() {}

> What if you didn't know this and assumed the default
constructor was pre-defined? The compiler would give you an
error comment about it not being defined, and you would be
started on the track of trying to figure out why.

:
CPSC 427, Lecture 13 11/17




Outline Smart Pointer Demo Goals Time
: :

Efficient use of resources

Efficiency is concerned with making good use of available
resources:

» Time (how fast a program works)
» Memory (how much memory the program requires)

» Other resources that are scarce and relatively costly to create:
» Network connections (TCP sockets)
» Database connections
Strategy for improving efficiency: Reuse and recycle. Maintain a
pool of currently unused objects and reuse rather than recreate
when possible.

In the case of memory blocks, this pool is often called a free list.

: :
CPSC 427, Lecture 13 12/17

00




Outline Smart Pointer Demo Goals Time
:

Efficiency measurement

A first step to improving efficiency is to know how the resources
are being used.

Measuring resource usage is not always easy.

The next demo is concerned with measuring execution time.

CPSC 427, Lecture 13 13/17
00




e
Outline Smart Pointer Demo Goals Time
: :

Clocks and Time Measurement

CPSC 427, Lecture 13 14/17
00




Outline Smart Pointer Demo Goals Time
: :

How to measure run time of a program

» There is no standard procedure in C++ for accurately
measuring time.

» Time measurement depends on the software clocks provided
by your computer and operating system.

» Clocks advance in discrete clicks called jiffies. A jiffy on the
Zoo linux machines is one millisecond (0.001 seconds) long.

» Even if the clock is 100% accurate, the measured time can be
off by as much as one jiffy.

» Hence, times shorter than tens of milliseconds cannot be
directly measured with much accuracy using the standard
software clock.

: :
CPSC 427, Lecture 13 15/17

00




Outline Smart Pointer Demo Goals Time
: :

High resolution clocks

> Linux also provides high resolution clocks based on CPU
timers.

» High resolution clocks are useful to the operating system for
task scheduling and timeouts.

» They are also available to the user for higher-precision time
measurements.

» Be aware that reading the clock involves a kernel call that
takes a certain amount of time. This itself may limit the
accuracy of timing measurements, even when the clock
resolution is sufficiently high for the desired accuracy.

» See man 7 time for more information about linux clocks.

: :
CPSC 427, Lecture 13 16/17
00




Outline Smart Pointer Demo Goals Time

Measuring time in real systems

» Measuring code efficiency in real systems is challenging. Many
factors can influence the results that are hard to control.
» Other process running on the same machine.
» Time spent in the OS moving data on and off disks.
» Memory caching behavior.

» Lacking a controlled laboratory environment, one can still take
measures to improve accuracy of the tests:

» Do some tests to determine what factors seem to have a
sizable effect on the run time, e.g., the first run of a program
is likely to be slower than subsequent runs because of caching.

» Run the same test several times to get a feeling for the
variance of results.

» Make sure the optimizer isn't optimizing away code that you
think is being executed.

:
CPSC 427, Lecture 13 17/17




	Smart Pointer Demo
	More on Course Goals
	Clocks and Time Measurement

