
Outline Storage Model Revisited Functions Revisited

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 15
March 10, 2016

CPSC 427, Lecture 15 1/22

Outline Storage Model Revisited Functions Revisited

Storage Model Revisited

Functions Revisited

CPSC 427, Lecture 15 2/22

Outline Storage Model Revisited Functions Revisited

Storage Model Revisited

CPSC 427, Lecture 15 3/22

Outline Storage Model Revisited Functions Revisited

Object parts

Recall that an object is a block of memory divided into parts,
where each part is an instance of the base class or is an instance of
a data member. We say that the parts are embedded in the
“parent” or outer object.

Embedded objects are actual objects in their own right. A
constructor is called when they are born, and their destructor is
called when they are about to die. They can be pointed at and
used wherever an object of their type is needed.

However, an embedded object is dependent on its parent and has
the same lifetime and storage class as its parent.

CPSC 427, Lecture 15 4/22

Outline Storage Model Revisited Functions Revisited

Object parts (cont.)

Because an embedded object lives and dies with its parent, it can
never be explicitly deleted, even if it lives in the heap.

Rather, it is deleted when its parent is deleted. Neverthtless, its
destructor will be called just before it dies, just like for any other
object!

Note that embedding order and derivation order are opposites. If
class Deriv is derived from class Base, then Base is the parent of
Deriv in the class hierarchy, but an instance of Deriv has an
instance of Base embedded within it.

CPSC 427, Lecture 15 5/22

Outline Storage Model Revisited Functions Revisited

Functions Revisited

CPSC 427, Lecture 15 6/22

Outline Storage Model Revisited Functions Revisited

Global vs. member functions
A global function is one that takes zero or more explicit arguments.
Example: f(a, b) has two explicit arguments a and b.

A member function is one that takes an implicit argument along
with zero or more explicit arguments.
Example: c.g(a, b) has two explicit arguments a and b and
implicit argument c.
Example: d->g(a, b) has two explicit arguments a and b and
implicit argument *d.

Note that an omitted implicit argument defaults to (*this),
which must make sense in the context.
Example: If g is a member function of class MyClass, then within
MyClass, the call g(a, b) defaults to (*this).g(a,b) (or
equivalently this->g(a,b)).

CPSC 427, Lecture 15 7/22

Outline Storage Model Revisited Functions Revisited

Defining global functions

There are three ways to define a global function.

1. Place the declaration at the top level of your code, outside of
any class declarations. Most functions in C are of this kind.

2. Place the declaration inside a class definition, prefixed by the
keyword static. This creates a global function whose name
is qualified by the class name. It’s visibility is controlled by the
visibility keywords public, protected, and private.

3. Place the declaration at the top level and prefix its name by
static. This creates a C-style static function whose name is
visible only within the one compile module. Classes and static
member functions provide a better way to provide modularity
and control name visibility, so this should not be used in C++.
It is retained only for compatibility with C.

CPSC 427, Lecture 15 8/22

Outline Storage Model Revisited Functions Revisited

Defining member functions

Placing a function declaration inside a class definition creates a
member function.

Its definition is considered to be “inside” the class, whether or not
it appears in the class or as an out-of-line function in a .cpp file.

Example:

class MyClass {

protected:

double g(const int* a, unsigned b) const;

};

This defines a member function g with explicit parameters of type
const int* and unsigned and implicit parameter of type const

MyClass&.

CPSC 427, Lecture 15 9/22

Outline Storage Model Revisited Functions Revisited

Operator syntax

We have seen the operator keyword used to extend the meaning
of operators.

Each binary operator ⊕ corresponds to a function whose name is
operator⊕, but the operator syntax a⊕ b does not tell us whether
to look for a global or a member function. Possibile meanings:

I Global function: operator⊕(a, b).

I Member function: a.operator⊕(b).

It could mean either, and the compiler sees if either one matches.
If both match, it reports an ambiguity.

CPSC 427, Lecture 15 10/22

Outline Storage Model Revisited Functions Revisited

Operator extension as member function
Here’s a sketch for how one might go about defining a complex
number class.

class Complex {

private:

double re; // real part

double im; // imaginary part

public:

Complex(double re, double im) : re(re), im(im) {}

Complex operator+(const Complex& b) const {

return Complex(re+b.re, im+b.im);

}

Complex operator*(const Complex& b) const {

return Complex(re*b.re - im*b.im, re*b.im + im*b.re);

}

};

CPSC 427, Lecture 15 11/22

Outline Storage Model Revisited Functions Revisited

Operator extension as global function

We have seen one important example of a global operator
extension when we define the output operator on a new class.

Given the choice, it is preferable to use a member operator
function.

We use a global form of operator<< because the left hand
operator is of predefined type ostream, and we can’t add member
functions to that class.

CPSC 427, Lecture 15 12/22

Outline Storage Model Revisited Functions Revisited

Prefix unary operator extensions

C++ has a number of prefix unary operators
*, -, ++, new, ...

The corresponding operator functions are
operator*(), operator-(), operator++(),

operator new(), ...

CPSC 427, Lecture 15 13/22

Outline Storage Model Revisited Functions Revisited

Postfix unary operator extensions

C++ also has two postfix unary operators
++, --.

The corresponding operator functions are
operator++(int), operator--(int).

This is a special case that breaks all the normal rules, but it works
since ++ and -- are not binary operators. The dummy int

parameter should be ignored.

CPSC 427, Lecture 15 14/22

Outline Storage Model Revisited Functions Revisited

Ambiguous operator extensions

class Bar {

public:

int operator+(int y) { return y+2; }

};

int operator+(Bar& b, int y) { return y+3; }

int main() {

Bar b;

cout << b+5 << endl;

}

Compiler reports error: ambiguous overload for

’operator+’ in ’b + 5’.

CPSC 427, Lecture 15 15/22

Outline Storage Model Revisited Functions Revisited

Functional composition

Functional composition refers to using the result returned by one
function as the argument for another.

Example: g(f(x)).

The type of f(x) (which is the result type declared in the
definition of f()) must be compatible with the corresponding
parameter type for some method of g().

Types are compatible if they are the same, or if the result type can
be converted to the corresponding parameter type.

CPSC 427, Lecture 15 16/22

Outline Storage Model Revisited Functions Revisited

Type compatibility

Here’s what the compiler does when it sees the call g(f(x)).

1. It finds the type of f(x). Call it T.

2. It looks for a method for g with signature (T).

3. If it finds one, that method is selected.

4. If not, it searches the methods for g with signatures that are
compatible with (T), meaning that it is possible to convert T
to the type required by the signature.

5. If it finds exactly one such method, then that is used.

6. If it fails to find one, it reports “no match”, and it lists the
candidates it tried.

7. If it finds more than one possible method, it reports
“ambiguous”.

CPSC 427, Lecture 15 17/22

Outline Storage Model Revisited Functions Revisited

Calling constructors implicitly
Normally, constructors are called implicitly when an object is
created, whether by new (in the case of dynamic storage) or by
having a declaration executed (in the case of automatic storage).

When several constructor methods are present, which is chosen
depends on the arguments supplied, either explicity or through
ctors, but the call itself is implicit.
Examples

I MyClass b creates a stack object and invokes the default
constructor MyClass().

I MyClass b(4): creates a stack object and invokes
constructor MyClass(4).

I new MyClass(6) creates a dynamic object and invokes
constructor MyClass(6).

CPSC 427, Lecture 15 18/22

Outline Storage Model Revisited Functions Revisited

Calling constructors explicitly

Constructors can also be called explicitly, just like ordinary global
functions.

The meaning is to create a new temporary stack object, just as a
new temporary is created to hold the result of y+z in the
expression x*(y+z).

As with all object construction, the constructor is called when the
object is created, and the destructor is called when it is deleted.

Because the created object is temporary, it must be used
immediately, after which it will be discarded.

This is how throw Fatal("Error message") works. Fatal()

creates an exception object of type Fatal for use by throw.

CPSC 427, Lecture 15 19/22

Outline Storage Model Revisited Functions Revisited

Conversion using constructor

Now suppose f() returns an object of type A& and g() expects an
argument of type B. What happens with g(f())?

Example 1:

class A; // forward declaration

class B {

public:

B(){}

B(A& aa) { cout << "B constructor called" << endl; }

};

Compiler will use B’s constructor to build a B& from an A&.

Output is “B constructor called”.

CPSC 427, Lecture 15 20/22

Outline Storage Model Revisited Functions Revisited

Conversion using a cast
Example 2:

class B; // forward declaration

class A {

public:

operator B() {

cout << "operator B cast called" << endl;

return *new B;

}

};

Compiler will use A::operator B() to cast the A& returned by
f() to the B expected by g().

Output is “operator B cast called”.

CPSC 427, Lecture 15 21/22

Outline Storage Model Revisited Functions Revisited

What if both options exist?
class A; // forward declaration

class B { public:

B(){}

B(A& aa) { cout << "B constructor called" << endl; }

};

class A { public:

operator B() {

cout << "operator B cast called" << endl;

return *new B;

}

};

A& f() { return *new A; }

B& g(B aa) { return *new B; }

Compiler will complain “error: conversion from ’A’ to

’B’ is ambiguous”.

CPSC 427, Lecture 15 22/22

	Storage Model Revisited
	Functions Revisited

