e
Outline Polymorphic Derivation
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 16
March 29, 2016

| |
CPSC 427, Lecture 16 1/16

e
Outline Polymorphic Derivation
: :

Polymorphic Derivation

CPSC 427, Lecture 16 2/16
00

e
Outline Polymorphic Derivation
: :

Polymorphic Derivation

CPSC 427, Lecture 16 3/16
00

Outline Polymorphic Derivation
: :

Some uses for derived classes.

» Code reuse. A base class can contain one copy of code that is
be used by several derived variants through inheritance.

» Modularity. The functionality provided by a base class can be
extended in a derived class. Example: BSquare extends
Square by adding board coordinates and clusters.

> Generic programming and isolation. Demo 17-Craps-extended
contains a simulator for the gambling game “craps” that can
use different dice implementations.

» Polymorphic collections. A company has different kinds of
employees with different rules for calculating their pay, each
represented by a derived class with its own calculatePay
function appropriate to that kind of employee.

: :
CPSC 427, Lecture 16 4/16

Outline Polymorphic Derivation
:

Type Hierarchies

Consider following simple type hierarchy:

class B { public: int £O; ... };
class U : B { int £O); ... };
class V : B { int £QO; ... };

We have a base class B and derived classes U and V.
A different method £ () is defined in each.

Relationships: A Uis a B (and more). A V is a B (and more).

A U can be used wherever a B is expected.

Example: Definition £ (B& x) ... ;callU z; f(z);

Inside of £ (), only the B-part of z is visible. This is called slicing.

CPSC 427, Lecture 16 5/16

Outline Polymorphic Derivation
: :

Pointers and slicing

Declare Bx bp; U*x up = new U; V* vp = new V.
Can write bp = up; or bp = vp;.

Why does this make sense?
» *up has an embedded instance of B.
» *vp has an embedded instance of B.

If bp = up, then bp points to the embedded B-instance of object
*xup. The rest of *up is inaccessible because of object slicing.

| |
CPSC 427, Lecture 16 6/16

Outline Polymorphic Derivation
: :

Ordinary derivation

In our previous example

class B { public: int £O; ... };
class U : B { int £QO); ... };

class V : B { int £O); ... };

B* bp;

bp can point to objects of type B, type U, or type V.

Want bp->f () to refer to U: : £() if bp points to a U object.
Want bp->f () to refer to V::£() if bp points to a V object.

However, with ordinary derivation, bp—>f () always refers to

B::f().

: :
CPSC 427, Lecture 16 7/16

Outline Polymorphic Derivation
: :

Polymorphic derivation

The keyword virtual allows for polymorphic derivation.

class B { public: virtual int £Q); ... };
class U : B { virtual int £(); ... };

class V : B { virtual int fO); ... };

B* bp;

A virtual function is dispatched at run time to the class of the
actual object.

bp—>f () refers to U: :£() if bp points to a U.
bp->£ () refers to V::£() if bp points to a V.
bp—>f () refers to B: :£() if bp points to a B.

Here, the type refers to the allocation type.

CPSC 427, Lecture 16 8/16
00

Outline Polymorphic Derivation
: :

Unions and type tags

We can regard bp as a pointer to the union of types B, U and V.

To know which of B::£(), U::£() or V::£() to use for the call
bp->f () requires runtime type tags.

If a class has virtual functions, the compiler adds a type tag field
to each object.
This takes space at run time.

The compiler also generates a vtable to use in dispatching calls on
virtual functions.

| |
CPSC 427, Lecture 16 9/16

Outline Polymorphic Derivation
: :

Virtual destructors

Consider delete bp;, where bp points to a U but has type B*.

The U destructor will not be called unless destructor B: : "B() is
declared to be virtual.

Note: The base class destructor is always called, whether or not it
is virtual.

In this way, destructors are different from other member methods.

Conclusion: If a derived class has a non-empty destructor, the base
class destructor should be declared virtual.

CPSC 427, Lecture 16 10/16
00

Outline Polymorphic Derivation
: :

Uses of polymorphism

Some uses of polymorphism:
» To define an extensible set of representations for a class.

» To allow containers to store mixtures of different but related
types of objects.

» To support run-time variability of within a restricted set of
related types.

CPSC 427, Lecture 16 11/16
00

Outline Polymorphic Derivation
: :

Multiple representations

Might want different representations for an object.

Example: A point in the plane can be represented by either
Cartesian or Polar coordinates.

A Point base class can provide abstract operations on points.
E.g., virtual int quadrant() const returns the quadrant of
*this.

For Cartesian coordinates, quadrant is determined by the signs of
the x and y coordinates of the point.
For polar coordinates, quadrant is determined by the angle 6.

Both Cartesian and Polar derived classes should contain a
method for int quadrant() const.

CPSC 427, Lecture 16 12/16
00

Outline Polymorphic Derivation
: :

Heterogeneous containers
One might wish to have a stack of Point objects.
The element type of the stack would be Pointx.
The actual values would have type either Cartesian* or Polar*.

The automatically generated type tags and dynamic dispatching
obviates the need to cast the result of pop() to the correct type.

Example:

Stack st; Pointx* p;
p = st.pop(); // no need to cast result
p->quadrant () ; // automatic dispatch

| |
CPSC 427, Lecture 16 13/16
00

Outline Polymorphic Derivation
:

Run-time variability
Two types are closely related; differ only slightly.
Example: Company has several different kinds of employees.

» Employee base class has a large and complicated payroll
function.

v

Payroll is same for all kinds of employees except for a function
pay () that computes the actual weekly pay.

v

Each employee kind has its own pay () function.

v

Big payroll function is in base class.

v

It calls pay () to get the actual pay for this Employee.

CPSC 427, Lecture 16 14/16

00

Polymorphic Derivation
:

Outline

Pure virtual functions

Suppose we don't want B: :£() and never create instances of B.
We make B: : £ () into a pure virtual function by writing =0.

class B { public: virtual int £f()=0; .}
class U : B { virtual int fO; ... };

class V : B { virtual int fO); ... };

B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f () is legal.
The compiler requires every derived class to contain a method £ ().

|
CPSC 427, Lecture 16 15/16

Outline Polymorphic Derivation
: :

Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated.
It can only be used as the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are pure
virtual (except for the destructor) and there are no data members,

Pure abstract classes define an interface a la Java.

An interface allows user-supplied code to integrate into a large
system.

| |
CPSC 427, Lecture 16 16/16

	Polymorphic Derivation

