e
Outline Visibility Craps
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 17
March 31, 2016

| |
CPSC 427, Lecture 17 1/29

e
Outline Visibility Craps
| |

Name Visibility

Demo: Craps Game

CPSC 427, Lecture 17 2/29
00

e
Outline Visibility Craps
: :

Name Visibility

CPSC 427, Lecture 17 3/29
00

Outline Visibility Craps
: :

Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

: :
CPSC 427, Lecture 17 4/29

00

Outline Visibility Craps
: :

Private derivation example
Example:
class A {
private: int x;
public: int y;
};
class B : A
)

{
0O {0 x4+

..} // privacy violation

A a; B b;

a.x // privacy violation
a.y // ok

b.x // privacy violation
b.y // privacy violation

| |
CPSC 427, Lecture 17 5/29
00

Outline Visibility Craps
: :

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

| |
CPSC 427, Lecture 17 6/29

00

Outline

Visibility Craps

Public derivation example

Example:

class A {
private: int x;
public: int y;

I
class B : public A {
. fO {... x++; ...} // privacy violation
3
//==—====== outside of class definitions --------
A a; B b;
a.x // privacy violation
a.y // ok
b.x // privacy violation
b.y // ok
CPSC 427, Lecture 17 7/29 |

e

Outline Visibility Craps
:

The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {
protected: int z;
+;
class B : A {

. f0 o z++; ...} // ok
};

|
CPSC 427, Lecture 17 8/29
00

Outline Visibility Craps
: :

Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.

| |
CPSC 427, Lecture 17 9/29

00

Outline Visibility Craps

Surprising example 1

class A {
protected:
int x;
I
class B : public A {
public:
int £() { return x; } // ok
int g(Ax a) { return a->x; } // privacy violation

© 00O Uik W

+;
Result:

trymel.cpp: In member function ’int B::g(Ax)’:
trymel.cpp:3: error: ’int A::x’ is protected
trymel.cpp:9: error: within this context

: :
CPSC 427, Lecture 17 10/29

Outline Visibility Craps
: :

Surprising example 2: contrast the following

1 class A { };
2 class B : public A {}; // <-- public derivation
3 int main() { Ax ap; B* bp;
4 ap = bp; }
Result: OK.
1 class A { };
2 class B : private A {}; // <-- private derivation
3 int main() { Ax ap; B* bp;
4 ap = bp; }
Result:

tryme2.cpp: In function ’int main()’:
tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’

: :
CPSC 427, Lecture 17 11/29

Outline Visibility Craps

Surprising example 3

class A { protected: int x; };
class B : protected A {};
int main() { A* ap; B* bp;

ap = bp; }

(O R N

Result:

tryme3.cpp: In function ’int main()’:
tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’

: :
CPSC 427, Lecture 17 12/29

Outline Visibility Craps

Names, Members, and Contexts

Data and function names can be declared in many different
contexts in C++: in a class, globally, in function parameter lists,
and in code blocks (viz. local variables).

Often the same identifier will be declared multiple times in
different contexts.

Two steps to determining the meaning of an occurrence of an
identifier:

1. Determine which declaration it refers to.

2. Determine its accessibility according to the privacy rules.

:
CPSC 427, Lecture 17 13/29

Outline Visibility Craps
: :

Declaration and reference contexts

Every reference x to a class data or function member has two
contexts associated with it:

» The declaration context is the context in which the referent
of x (the thing that x refers to) appears.
» The reference context is the context in which the reference
X appears.
Accessibility rules apply to class data and function members
depend on both the declaration context and the reference context
of a reference x.

: :
CPSC 427, Lecture 17 14/29
00

Outline Visibility Craps

Declaration context example

Example:

int x = 3; // declaration context: global

class A {
int x; // declaration context: A
void f(int x) {...} // declaration context: parameter
void g() {int x; ... } // declaration context: block local

};

: :
CPSC 427, Lecture 17 15/29

00

Outline Visibility Craps

Reference context example

class A {
int x;
int £() {return x;} // reference context A
int g(A* p) {return p->x;} // reference context A
+
int main() {
A obj;
obj.x; // reference context global

}

All three commented occurrences of x have declaration context A
because all three refer to A: :x, the data member declared in
class A.

: :
CPSC 427, Lecture 17 16/29

Outline Visibility Craps
: :

Inside and outside class references

A reference x to a data/function member of class A is
» inside class A if the reference context of x is A;
> outside class A otherwise.

For simple classes:
> an inside reference x is always valid.

> an outside reference x is valid iff the referent is public.

CPSC 427, Lecture 17 17/29
00

Outline Visibility

Craps

Examples
References to A: :x
class A {
int x;
int £() { return x; 7} // inside
int g(Ax p) { return p—>x; } // inside
int h(Q);
};
int A::h () { return x; } // inside
#include <iostream>
int main() {
A aObject;
std::cout << albject.x; // outside
};
| CPSC 427, Lecture 17 18/29 |

00

Outline Visibility Craps
: :

Inherited names

In a derived class, names from the base class are inherited by the
derived class, but their privacy settings are altered as described in
the last lecture.

The result is that the same member exists in both classes but
with possibly different privacy settings.

Question: Which privacy setting is used to determine visibility?

Answer: The one of the declaration context of the referent.

: :
CPSC 427, Lecture 17 19/29

Outline Visibility Craps
: :

Inheritance example

class A { protected: int x; };
class B : private A {

int £() { return x; } // ok, x is inside B

int g(A* p) { return p->x; } // not okay, x is outside A
};
Let bb be an instance of class B. Then bb contains a field x,
inherited from class A. This field has two names A: :x and B: :x.

The names are distinct and may have different privacy attributes.
In this example, A: :x is protected and B: :x is private.

First reference is okay since the declaration context of x is B.
Second reference is not since the declaration context of x is A.
Both occurrences have reference context B.

: :
CPSC 427, Lecture 17 20/29

00

Outline Visibility Craps

Inaccessible base class

A base class pointer can only reference an object of a derived class
if doing so would not violate the derived class’s privacy. Recall
surprising example 2 (bottom):

1 class A { };

2 class B : private A {}; // <-- private derivation
3 int main() { A* ap; B* bp;

4 ap=1bp; }

The idea is that with private derivation, the fact that B is derived
from A should be completely invisible from the outside.

With protected derivation, it should be completely invisible except
to its descendants.

:
CPSC 427, Lecture 17 21/29

Outline Visibility Craps

Visibility rules

Every class member has one of four privacy attributes: public,
protected, private, or hidden.

These attributes determine the locations from which a class
member can be seen.

» public members can be seen from any location.

v

protected members can be seen from inside the class or its
children.

» private members can only be seen from inside the class.

hidden members cannot be seen at all.

v

: :
CPSC 427, Lecture 17 22/29
00

Outline Visibility Craps
: :

Explicit privacy attributes

The privacy attributes for declared class members are given
explicitly by the privacy keywords public, protected, and
private

There is no way to explicitly declare a hidden member.

Example:

class A {
private: int x;
protected: int y;
public: int z;
};

: :
CPSC 427, Lecture 17 23/29

00

Outline Visibility Craps
: :

Implicit privacy attributes

Inherited class members are assigned implicit privacy attributes
based on their attributes in the parent class and by the kind of
derivation, whether public, protected, or private.

1. If the member is public in the parent class, then its attribute
in the child class is given by the kind of derivation.

2. If the member is protected in the parent class, then its
attribute in the child class is protected for public and
protected derivation, and private for private derivation.

3. If the member is private or hidden in the parent class, then it
is hidden in the child class.

CPSC 427, Lecture 17 24/29
00

Outline Visibility Craps
: :

Implicit privacy chart

Below is a revision of the chart presented in lecture 10.

Kind of Derivation

public protected private

. public public protected private
AFt”bUte protected | protected protected private
in base private hidden hidden hidden
class | hidden | hidden hidden hidden

Attribute in derived class.

: :
CPSC 427, Lecture 17 25/29

Outline
:

Visibility Craps

Summary

1.

All members of the base class are inherited by the derived
class and appear in every instantiation of that class.

All inherited members receive implicitly defined privacy
attributes.

Visibility of all data members is determined solely by their
privacy attributes.

Public and protected base class variables are always visible
within a derived class.

Private and hidden base class variables are never visible in the
derived class.

The kind of derivation never affects the visibility of inherited
members in the derived class; only their implicit attributes.

CPSC 427, Lecture 17 26/29

e
Outline Visibility Craps
: :

Demo: Craps Game

CPSC 427, Lecture 17 27/29
00

Outline Visibility Craps
: :

Game Rules

The player (known as the shooter) rolls a pair of fair dice

1. If the sum is 7 or 11 on the first throw, the shooter wins; this
event is called a natural.

2. If the sum is 2, 3, or 12 on the first throw, the shooter loses;
this event is called craps.

3. If the sum is 4, 5, 6, 8, 9, or 10 on the first throw, this
number becomes the shooter’s point. The shooter continues
rolling the dice until either she rolls the point again (in which
case she wins) or rolls a 7 (in which case she loses).

(From http://www.math.uah.edu/stat/games/Craps.html)

: :
CPSC 427, Lecture 17 28/29
00

http://www.math.uah.edu/stat/games/Craps.html

Outline Visibility Craps
: :

A Craps simulator

Demo 17-Craps illustrates the use of derived classes in order to
allow the simulator to work with both random dice and
“prerecorded” dice throws stored in a file.

CPSC 427, Lecture 17 29/29
00

	Name Visibility
	Demo: Craps Game

