
Outline Hangman

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 18
April 5, 2016

CPSC 427, Lecture 18 1/20



Outline Hangman

Demo: Hangman Game
Game Rules
Code Design
Storage Management
Refactored Game

CPSC 427, Lecture 18 2/20



Outline Hangman

Demo: Hangman Game

CPSC 427, Lecture 18 3/20



Outline Hangman

Game Rules

Game Rules

CPSC 427, Lecture 18 4/20



Outline Hangman

Game Rules

Hangman game

Well-known letter-guessing game.

Start with a hidden puzzle word.

Player guesses a letter.

I If letter appears in puzzle word, matching letters are
uncovered.

I If letter does not appear, it is shown in list of bad guesses.

Player wins when puzzle word is uncovered.

Player loses after 7 bad guesses

CPSC 427, Lecture 18 5/20



Outline Hangman

Code Design

Code Design

CPSC 427, Lecture 18 6/20



Outline Hangman

Code Design

Overall design

Game elements:

1. Puzzle word and letters found so far.

2. Bad guesses word.

3. Alphabet and letters left.

4. Vocabulary.

5. Game board display (viewer).

6. Game play (controller).

CPSC 427, Lecture 18 7/20



Outline Hangman

Code Design

Use cases

Two levels.

1. Play one round of Hangman on a puzzle word.
I Get input letter from user.
I Classify input as good, bad, redundant, or not allowed.
I Inform user and show updated board.
I Announce termination and win/loss.

2. Repeated play
I Choose unused word from vocabulary.
I Play Hangman with that word.
I Tally and announce win/loss.
I Ask user whether to play again.

CPSC 427, Lecture 18 8/20



Outline Hangman

Code Design

Code structure: Model

Model

1. Alphabet used to represent letters left.

2. HangWord used to represent puzzle word and bad guesses.

3. Both are derived from BaseWord

4. Common elements are a word and a visibility mask.

5. Variable elements:
I How to print masked word.
I Operations needed: find and try

6. Class Board data members store model state.

CPSC 427, Lecture 18 9/20



Outline Hangman

Code Design

Code structure: Viewer and controller

Viewer Contained in class Board.

I Board::print() prints the puzzle, letters left, and bad
guesses.

I Board::move() prints guess, outcome, and next board.

I Board::play() prints the win/loss message.

Controller Contained in class Board.

I Board::play() carries out turns and determines game
termination.

I Board::move() prompts users for character and carries out
turn.

I Board::guess() updates the model.

CPSC 427, Lecture 18 10/20



Outline Hangman

Code Design

Class Game

Class Game is a top-level MVC design.

I Model contains alphabet, remaining vocabulary, and win/loss
counters.

I Viewer is embedded in Game::play().

I Controller is in Game::playRound() and Game::play().

CPSC 427, Lecture 18 11/20



Outline Hangman

Storage Management

Storage Management

CPSC 427, Lecture 18 12/20



Outline Hangman

Storage Management

Storage management

Two storage management issues in Hangman:

1. How to store the vocabulary list?

2. How to store the words in the vocabulary?

Natural solutions are to store vocabulary as an array of pointers to
strings.

Natural way to each string is to use new to allocate a character
buffer of the appropriate length.

Design issues:

I How big should the vocabulary array be?

I Who owns the strings and takes responsibility for cleanup
when they are no longer needed?

CPSC 427, Lecture 18 13/20



Outline Hangman

Storage Management

String store
A StringStore provide an alternative way to store words.

Instead of using new once for each string, allocate a big char array
and copy strings into it.

When no longer needed, ~StringStore() deletes entire array.

Advantages and disadvantages:

I Much more efficient—(each new consumes minimum of 32
bytes on modern machines).

I Simpler storage management—ownership of storage remains
with StringStore.

I Downside: Can’t reclaim storage from individual strings until
the end.

I How big should the char array be?

CPSC 427, Lecture 18 14/20



Outline Hangman

Refactored Game

Refactored Game

CPSC 427, Lecture 18 15/20



Outline Hangman

Refactored Game

Refactored hangman game

Demo 18b-Hangman-full extends 18a-Hangman in three
respects:

1. It removes the fixed limitation on the vocabulary size.

2. It removes the fixed limitation on the string store size.

3. It more clearly separates the model of Board from the
viewer/controller.

We’ll examine each of these in detail.

CPSC 427, Lecture 18 16/20



Outline Hangman

Refactored Game

Flex arrays

A FlexArray is a growable array of elements of type T.

Whenever the array is full, private method grow() is called to
increase the storage allocation.

grow() allocates a new array of double the size of the original and
copies the data from the original into it (using memcpy()).

Note: After grow(), array is 1/2 full.

By doubling the size, the amortized time is O(n) for n items.

CPSC 427, Lecture 18 17/20



Outline Hangman

Refactored Game

Flex array implementation issues

Element type: A general-purpose FlexArray should allow arrays
of arbitrary element type T.

If only one type is needed, we can instantiate T using typedef.
Example: typedef int T; defines T as synonym for int.

C++ templates allow for multiple instantiations.

Class types: If T is a class type, then its default constructor and
destructor are called whenever the array grows.

They must both be designed so that this does not violate the
intended semantics.

This problem does not occur with numeric or pointer flexarrays.

CPSC 427, Lecture 18 18/20



Outline Hangman

Refactored Game

String store limitation

Can’t use FlexArray to implement StringStore since pointers
to strings would change after grow().

Instead, when one StringStore fills up, start another.

Only really want another storage pool, not another StringStore
object.

Eacn new Pool is linked to the previous one, enabling all pools to
be deleted by ~StringStore().

CPSC 427, Lecture 18 19/20



Outline Hangman

Refactored Game

Refactoring Board class

Old design for Board contained the board model, the board display
functions, and the user-interaction code.

New design puts all user interaction into a derived class Player.

This makes a clean separation between the model (Board) and the
controller (Player).

The viewer functionality is still distributed between the two.

What are the pros and cons of this distribution?

CPSC 427, Lecture 18 20/20


	Demo: Hangman Game
	Game Rules
	Code Design
	Storage Management
	Refactored Game


