
Outline Templates Casts Op Ext Virtue

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 20
April 12, 2016

CPSC 427, Lecture 20 1/19



Outline Templates Casts Op Ext Virtue

Templates

Casts and Conversions

Operator Extensions

Virtue Demo

CPSC 427, Lecture 20 2/19



Outline Templates Casts Op Ext Virtue

Templates

CPSC 427, Lecture 20 3/19



Outline Templates Casts Op Ext Virtue

Templatizing a class

Demo 20a-BarGraph results from templatizing Row and Cell

classes in 09-BarGraph.
Template parameter T replaces uses of Item within Row.

Here is what was necessary to carry this out:

1. Fold the code from row.cpp into row.hpp.

2. Precede each class and function declaration with
template<class T>.

3. Follow occurrences of Row with template argument <Item> in
Graph.hpp and Graph.cpp.

4. Follow each use of Row with template argument <T> in
row.hpp.

CPSC 427, Lecture 20 4/19



Outline Templates Casts Op Ext Virtue

Using template classes

Demo 20b-Evaluate uses templates and derivation together by
deriving a template class Stack<T> from the template class
FlexArray<T> introduced in 18b-Hangman-full.

It is a simple expression evaluator based on a precedence parser.

The precedence parser makes uses of two instantiations of
Stack<T>:

1. Stack<double> Ands;

2. Stack<Operator> Ators;

CPSC 427, Lecture 20 5/19



Outline Templates Casts Op Ext Virtue

Casts and Conversions

CPSC 427, Lecture 20 6/19



Outline Templates Casts Op Ext Virtue

Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;

unsigned u;

double d;

int* p;

(double)x; // type double; preserves semantics

(int)u; // type unsigned; possible loss of information

(unsigned)d; // type unsigned; big loss of information

(long int)p; // type long int; violates semantics

(double*)p; // preserves pointerness but violates semantics

CPSC 427, Lecture 20 7/19



Outline Templates Casts Op Ext Virtue

Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.

CPSC 427, Lecture 20 8/19



Outline Templates Casts Op Ext Virtue

C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast Applies only to pointers and references to
objects. Preserves semantics. Applied at run time. [See demo
20c-Dynamic cast.]

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast Allows const restriction to be overridden. Applied
at compile time.

CPSC 427, Lecture 20 9/19



Outline Templates Casts Op Ext Virtue

Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)x.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int*>(p);
I const cast<int>(c);

CPSC 427, Lecture 20 10/19



Outline Templates Casts Op Ext Virtue

Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.

CPSC 427, Lecture 20 11/19



Outline Templates Casts Op Ext Virtue

Ambiguity

Can be more than one way to cast from B to A.
class B;

class A { public:

A(){}

A(B& b) { cout<< "constructed A from B\n"; }

};

class B { public:

A a;

operator A() { cout<<"casting B to A\n"; return a; }

};

int main() {

A a; B b;

a=b;

}

error: conversion from ’B’ to ’const A’ is ambiguous

CPSC 427, Lecture 20 12/19



Outline Templates Casts Op Ext Virtue

explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;

class A {

public

A(){}

explicit A(B& b) { cout<< "constructed A from B\n"; }

};

...

Question: Why was an explicit definition of the default constructor
not needed?

CPSC 427, Lecture 20 13/19



Outline Templates Casts Op Ext Virtue

Operator Extensions

CPSC 427, Lecture 20 14/19



Outline Templates Casts Op Ext Virtue

How to define operator extensions

Unary operator op is shorthand for operator op ().

Binary operator op is shorthand for operator op (T arg2).

Some exceptions: Pre-increment and post-increment.

To define meaning of ++x on type T, define operator ++().

To define meaning of x++ on type T, define operator ++(int) (a
function of one argument). The argument is ignored.

CPSC 427, Lecture 20 15/19



Outline Templates Casts Op Ext Virtue

Other special cases

Some special cases.

I Subscript: T& operator [](S index).

I Arrow: X* operator ->() returns pointer to a class X to
which the selector is then applied.

I Function call; T2 operator ()(arg list).

I Cast: operator T() defines a cast to type T.

Can also extend the new, delete, and , (comma) operators.

CPSC 427, Lecture 20 16/19



Outline Templates Casts Op Ext Virtue

Virtue Demo

CPSC 427, Lecture 20 17/19



Outline Templates Casts Op Ext Virtue

Virtual virtue

class Basic {

public:

virtual void print(){cout <<"I am basic. "; }

};

class Virtue : public Basic {

public:

virtual void print(){cout <<"I have virtue. "; }

};

class Question : public Virtue {

public:

void print(){cout <<"I am questing. "; }

};

CPSC 427, Lecture 20 18/19



Outline Templates Casts Op Ext Virtue

Main virtue

What does this do?

int main (void) {

cout << "Searching for Virtue\n";

Basic* array[3];

array[0] = new Basic();

array[1] = new Virtue();

array[2] = new Question();

array[0]->print();

array[1]->print();

array[2]->print();

return 0;

}

See demo 20d-Virtue!

CPSC 427, Lecture 20 19/19


	Templates
	Casts and Conversions
	Operator Extensions
	Virtue Demo

