e
Outline Reuse Linear Ordered Multiple Templete
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 22
April 19, 2016

| |
CPSC 427, Lecture 22 1/29

e
Outline Reuse Linear Ordered Multiple Templete
: :

Code Reuse

Linear Containers

Ordered Containers

Multiple Inheritance

Template Example

| |
CPSC 427, Lecture 22 2/29

e
Outline Reuse Linear Ordered Multiple Templete
: :

Code Reuse

CPSC 427, Lecture 22 3/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Reusable code

One of the major goals of C++ is code reusability.

The desire to reuse code occurs in two very different scenarios.

Sharing Different parts of a single application needs the same
or similar code blocks. The code should be written
once and shared by the parts that need it.
Mechanisms for code sharing include functions and
(non-polymorphic) derivation.

Libraries A code base is made available for others to use in
their applications, e.g., the C++ Standard Library.
Useful mechanisms include polymorphic derivation
and templates.

: :
CPSC 427, Lecture 22 4/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Problems with reusing code

The problem with code reuse is that one rarely wants to reuse the
exact same piece of code. Rather, one wants similar code but
specialized to a particular application.

For example, most useful functions take parameters which tell the
function what data to compute on. Different applications can call
the function with their own data.

Similarly, containers such as vector make sense for many different
kinds of objects. The STL container vector<T> allows the generic
vector to be specialized to any suitable type T object.

| |
CPSC 427, Lecture 22 5/29

Outline Reuse Linear Ordered Multiple Templete
:

How to allow variability

Code reusability becomes the problem of bridging the gap between
abstract general code and specific concrete application.

» For functions, the various function call mechanisms bridge the
gap.

» With polymorphic derivation, a base class pointer pointing to
a specific derived class object bridges the gap.

» With templates, the template parameter bridges the gap.

In all three cases, application-specific data must satisfy the
constraints required by the general code.

|
CPSC 427, Lecture 22 6/29
00

Outline Reuse Linear Ordered Multiple Templete
:

Specifying constraints

One of the important mechanisms in C++ for specifying contraints
is the type system.

» For functions, the types of the actual arguments must be
compatible with the declared types of the parameters.
Violations of these constraints can be detected at compile
time.

» With polymorphic derivation, the type system also allows for
some constraint checking, but a dynamic downcast (convert
from pointer-to-base to pointer-to-derived) requires runtime
checking.

» With templates, specifying and checking the constraints is
more difficult. We explore some of the ways this can be done.

:
CPSC 427, Lecture 22 7/29

e
Outline Reuse Linear Ordered Multiple Templete
: :

Linear Containers

CPSC 427, Lecture 22 8/29
00

Outline Reuse Linear Ordered Multiple Templete
:

Demo 19-Virtual

Linked list code was introduced in demo 09-BarGraph, where a
Row was a linked list of Item*, where an Item contained exam
information for a particular student.

Demo 19-Virtual extracted the linked list code from Row and
called it Linear. The specific Item class from 09-BarGraph was
renamed Exam, and the type Item was reserved for the kind of
object that could be put in a linked list.

|
CPSC 427, Lecture 22 9/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Sharing in 19-Virtual

19-Virtual observes that stacks and queues are very similar data
structures.
> They are both linear lists of items.
» Both support operations put () and pop() that allow items to
be inserted into and removed from the list.
» The only difference is where in the list new items are inserted.
The common code is in the base class Linear. The derived classes

Stack and Queue override virtual base class functions as needed
for their specializations.

: :
CPSC 427, Lecture 22 10/29
00

Outline Reuse Linear Ordered Multiple Templete
:

Abstract containers

Both Stack and Queue are examples of list containers that
support four operations: put, pop, peek, and print.

Class Container is an abstract base class with a virtual
desctructor and four pure abstract functions put, pop, peek, and
print.

Linear is derived from Container. This ensures that any generic
code for dealing with containers can handle Linear objects.

However, Container is general on only one dimension. It is still
specific to containers of Item* objects.

:
CPSC 427, Lecture 22 11/29
00

e
Outline Reuse Linear Ordered Multiple Templete
: :

Ordered Containers

CPSC 427, Lecture 22 12/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Demo 22a-Multiple

The purpose of demo 22a-Multiple is to generalize the linear
containers of demo 19-Virtual to support lists of items that are
sorted according to a data-specific ordering.

It does this by adding class Ordered and Item, creating two
ordered containers of type class List and class PQueue, and
extending the code appropriately.

: :
CPSC 427, Lecture 22 13/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Ordered base class

Ordered is an abstract class (interface) that promises items can be
ordered based on an associated key.

It promises functions:

> A function key () that returns the key associated with an
item.

» Comparison operators < and == that compare the derived item
*this with an argument key.

Use:
class Item : public Exam, Ordered { ... };

Note: We can use private derivation because every function in
Ordered is abstract and therefore must be overridden in Item.

: :
CPSC 427, Lecture 22 14/29

Outline

Reuse Linear Ordered Multiple Templete
:

class Item

Item is publicly derived from Exam, so it has access to Exam's
public and protected members.

It fulfills the promises of Ordered by defining:

bool

operator==(const KeyType& k) const { return key() == k; }

bool

operator< (const KeyType& k) const { return key() < k; }

bool

operator< (const Item& s) const { return key() < s.key(); }

KeyType is defined with a typedef in exam.hpp to be int.

CPSC 427, Lecture 22 15/29

00

Outline Reuse Linear Ordered Multiple Templete
: :

Container base class

We saw the Container abstract class in demo 19-Virtual. It
promises four functions:

virtual void put (Items*) =0; // Put in Item
virtual Itemx pop() =0; // Remove Item
virtual Itemx peek() =0; // Look at Item

virtual ostream& print(ostream&) =0; // Print all Items

Use: class Linear : Container { ... };

: :
CPSC 427, Lecture 22 16/29

00

Outline Reuse Linear Ordered Multiple Templete
: :

Additions to Linear

The meaning of put (), pop(), and peek() for ordered lists is
different from the unordered version, even though the interface is
the same.

The concept of a cursor is introduced into Linear along with new
virtual functions insert () and focus() for manipulating the
cursor.

peek() and pop () always refer to the position of the cursor.
put () inserts into the middle of the list in order to keep the list
properly sorted.

: :
CPSC 427, Lecture 22 17/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

class Linear

Linear implements general lists through the use of a cursor, a pair
of private Cell pointers here and prior.

Protected insert () inserts at the cursor.
Protected focus () is virtual and must be overridden in each
derived class to set the cursor appropriately for insertion.

Cursors are accessed and manipulated through protected functions
reset(), end(), and operator ++().

Use:
List::insert(Cell* cp) {reset(); Linear::insert(cp);}
inserts at the beginning of the list.

: :
CPSC 427, Lecture 22 18/29

00

Outline Reuse Linear Ordered Multiple Templete
: :

class PQueue

PQueue inserts into a sorted list.

void insert(Cellx cp) {
for (reset(); 'end(); ++*this) { // find insertion spot.
if (!'(*this < cp))break;
}

Linear::insert(cp); // do the insertion.

}

Note the use of the comparison between a PQueue and a Cellx*.

This is defined in 1inear.hpp using the cursor:
bool operator< (Cell* cp) {
return (*cp->data < *here->data); }

: :
CPSC 427, Lecture 22 19/29

e
Outline Reuse Linear Ordered Multiple Templete
: :

Multiple Inheritance

CPSC 427, Lecture 22 20/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

What is multiple inheritance

Multiple inheritance simply means deriving a class from two or
more base classes.

Recall from demo 22a-Multiple:
class Item : public Exam, Ordered { ... };

Here, Item is derived from both Exam and from Ordered.

CPSC 427, Lecture 22 21/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Object structure

Suppose class A is multiply derived from both B and C.
We write this as class A : B, C { ... };.

Each instance of A has “embedded” within it an instance of B and
an instance of C.

All data members of both B and C are present in the instance, even
if they are not visible from within A.

Derivation from each base class can be separately controlled with
privacy keywords, e.g.:
class A : public B, protected C { ... };.

: :
CPSC 427, Lecture 22 22/29

Outline Reuse Linear Ordered Multiple Templete
: :

Diamond pattern

One interesting case is the diamond pattern.

class D { .}
class B : public D {
class C : public D {
class A : public B, C {

I

3

s s

I

Each instance of A contains two instances of D—one in B and one
in C.

These can be distinguished using qualified names.
Suppose x is a public data member of D.

Within A, can write B: :D: :x to refer to the first copy, and
C::D: :x to refer to the second copy.

: :
CPSC 427, Lecture 22 23/29

e
Outline Reuse Linear Ordered Multiple Templete
: :

Template Example

CPSC 427, Lecture 22 24/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Using templates with polymorphic derivation

To illustrate templates, | converted 22a-Multiple to use template
classes. The result is in 22b-Multiple-template.

There is much to be learned from this example.
Today | point out only a few features.

CPSC 427, Lecture 22 25/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Container class hierarchy

As before, we have PQueue derived from Linear derived from
Container.

Now, each of these have become template classes with parameter
class T.
T is the item type; the queue stores elements of type T*.

The main program creates a priority queue using
PQueue<Item> P;

CPSC 427, Lecture 22 26/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

ltem class hierarchy

As before, we have Item derived from Exam, Ordered.

Item is an adaptor class.
It bridges the requirements of PQueue<T> to the Exam class.

CPSC 427, Lecture 22 27/29
00

Outline Reuse Linear Ordered Multiple Templete
: :

Ordered template class

Ordered<KeyType> describes an abstract interface for a total
ordering on elements of abstract type KeyType.

Item derives from Ordered<KeyType>, where KeyType is defined
in exam.hpp using a typedef.

An Ordered<KeyType> requires the following:

virtual const KeyType& key() const =0;
virtual bool operator < (const KeyType&) const =0;
virtual bool operator == (const KeyType&) const =0;

That is, there is the notion of a sort key. key () returns the key
from an object satisfying the interface, and two keys can be
compared using < and ==.

: :
CPSC 427, Lecture 22 28/29

Outline Reuse Linear Ordered Multiple Templete
: :

Alternative Ordered interfaces

As a still more abstract alternative, one could require only
comparison operators on abstract elements (of type Ordered).
That is, the interface would have only two promises:]

virtual bool operator < (const Ordered&) const =0;
virtual bool operator == (const Ordered&) const =0;

This has the advantage of not requiring an explicit key, but it's
also less general since keys are often used to locate elements (as is
done in the demo).

: :
CPSC 427, Lecture 22 29/29

00

	Code Reuse
	Linear Containers
	Ordered Containers
	Multiple Inheritance
	Template Example

