
Outline Linear STL & Poly Design Patterns

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 23
April 21, 2016

CPSC 427, Lecture 23 1/42

Outline Linear STL & Poly Design Patterns

Linear Container Design

STL and Polymorphism

Design Patterns

CPSC 427, Lecture 23 2/42

Outline Linear STL & Poly Design Patterns

Linear Container Design

CPSC 427, Lecture 23 3/42

Outline Linear STL & Poly Design Patterns

Overview of linear container example

We’ve seen three closely related designs for linear containers:

I 19-Virtual

I 22a-Multiple

I 22b-Multiple-template

Common to all three examples is the use of a linked list of Cell
objects to implement various kinds of containers store data objects
of type Exam.

CPSC 427, Lecture 23 4/42

Outline Linear STL & Poly Design Patterns

Differences in functionality
19-Virtual implements a FIFO class Stack and a LIFO class

Queue of unordered Exams.

22a-Multiple and 22b-Multiple-template add a key()

method to Exam and implement two new data structures that
make use of the key:

I class List is an unordered set of elements, where push()

inserts an element at the front of the list and pop() prompts
the user for the key of the element to be removed.

I class PQueue maintains its elements in a sorted list, where
push() inserts an element into the middle of the list so as to
maintain the elements in descending order, based on an
underlying ordering on keys, and pop() removes the front
(largest) element.

CPSC 427, Lecture 23 5/42

Outline Linear STL & Poly Design Patterns

Class structure

The class structure of the three implementations are similar as are
the main programs. All have have the following classes:

I class Item are the objects that live in the containers.

I class Exam are the application-specific user objects.

I class Container is the abstract interface for all containers.

I class Linear is the common code for the containers.

In 19-Virtual, Item and Exam are synonymous.

In 22a-Multiple and 22b-Multiple-template, Item is derived
from Exam and extends the comparison operators < and ==.

CPSC 427, Lecture 23 6/42

Outline Linear STL & Poly Design Patterns

Template structure

22b-Multiple-template adds a template parameter class T to
represent the application-specific user object type.

In the sample application, main() instantiates the template as
List<Item> and PQueue<Item>.

As before, Item is derived from Exam, so to create containers for a
new user type MyData would require rewriting Item appropriately.

CPSC 427, Lecture 23 7/42

Outline Linear STL & Poly Design Patterns

Further extensions

Can we make Item a template class, e.g.,

template <class T>

class Item : public T, public Ordered<KeyType> { ... };

Then the user with application-specific class MyData could just use
Item<MyData> wherever 22b-Multiple-template uses Item.

CPSC 427, Lecture 23 8/42

Outline Linear STL & Poly Design Patterns

Two problems

Two problems must be overcome to make this approach work:

1. Type KeyType appropriate to MyData must be defined
somewhere.

2. Item contains an Exam-specific constructor
Item(const char* init, int sc) : Exam(init, sc){}
that would have to be eliminated in favor of something that
would work in general.

CPSC 427, Lecture 23 9/42

Outline Linear STL & Poly Design Patterns

Defining KeyType

Problem 1 can be solved by putting a typedef for KeyType into
class MyClass. This type name can be used as follows:

template <class T>

class Item : public T, public Ordered<typename T::KeyType>

{ ... };

CPSC 427, Lecture 23 10/42

Outline Linear STL & Poly Design Patterns

Constructing the data elements

Problem 2 is not so easily solved. Some possibilities:
I Have the user construct a MyData object, then have Item use

MyData’s copy constructor, e.g.,

Item(const T& data) : T(data) {}

This adds a time penalty and a requirement that T be
copyable.

I Instead of deriving Item<T> from T, compose a T* in
Item<T>, and initialize it with a generic Item constructor,
e.g.,

T* base;

Item(T* dt) : base(dt) {}

CPSC 427, Lecture 23 11/42

Outline Linear STL & Poly Design Patterns

23a-Multiple-template

This second idea is implemented in example
23a-Multiple-template.

A consequence of this design is that main() now mentions only
the user type (Exam), not Item, effectively isolating the user
interface from the underlying implementation, e.g.,

List<Exam> L;

L.put(new Exam("Ned", 29));

L.put(new Exam("Leo", 37));

L.put(new Exam("Max", 18));

CPSC 427, Lecture 23 12/42

Outline Linear STL & Poly Design Patterns

Storage management

A basic design question has to do with ownership of dynamic
storage.

In STL, the user retains ownership of arguments, and a container
such as vector manages copies of the elements.

In these linear container examples, ownership transfers to the
container.

I The user creates a element using new and passes a pointer to
the put() function.

I pop() returns ownership of the object to the user, who is
then responsible for its eventual deletion.

I The container is responsible for deleting any objects it still
contains when it goes away.

CPSC 427, Lecture 23 13/42

Outline Linear STL & Poly Design Patterns

STL and Polymorphism

CPSC 427, Lecture 23 14/42

Outline Linear STL & Poly Design Patterns

Derivation from STL containers

Common wisdom on the internet says not to inherit from STL
containers.

For example,
http://en.wikipedia.org/wiki/Standard Template Library says,

“STL containers are not intended to be used as base
classes (their destructors are deliberately non-virtual);
deriving from a container is a common mistake.”

This reflects Rule 35 of Sutter and Alexandrescu,

“Avoid inheriting from classes that were not designed to
be base classes.”

CPSC 427, Lecture 23 15/42

http://en.wikipedia.org/wiki/Standard_Template_Library
http://proquest.safaribooksonline.com/0321113586

Outline Linear STL & Poly Design Patterns

Replacing authority with understanding

C++ is a complicated and powerful language.

Some constructs such as classes are used for several different
purposes.

What is appropriate in one context may not be in another.

Simple rules will not make you a good C++ programmer. Thought,
understanding, and experience will.

CPSC 427, Lecture 23 16/42

Outline Linear STL & Poly Design Patterns

Two kinds of derivation

C++ supports two distinct kinds of derivation:

I Simple derivation.

I Polymorphic derivation.

class A { ... };

class B : public A { ... };

We say B is derived from A, and B inherits members from A.

Each B object has an A object embedded within it.

The derivation is simple if no members of A are virtual;
otherwise it is polymorphic.

CPSC 427, Lecture 23 17/42

Outline Linear STL & Poly Design Patterns

How are they the same?
With both kinds of derivation, a function of the base class A can
be overridden by a function in B.

In both cases, one can create and delete objects of class B.

Both A’s and B’s destructor are called when a B object is deleted.

#include <iostream>

class A { public:

~A() { std::cout << "A’s destructor called" << std::endl; }

};

class B: public A { public:

~B() { std::cout << "B’s destructor called" << std::endl; }

};

int main() { B bobj; }

Output: B’s destructor called

A’s destructor called

CPSC 427, Lecture 23 18/42

Outline Linear STL & Poly Design Patterns

What is simple derivation good for?

Some uses for simple derivation.

I Code sharing. A common base can be extended in different
directions through derivation.

I Creating a new API to system resources (e.g., 14-StopWatch
demo).

I Increasing modularity through layering.

With simple derivation, the derived class is the public interface.

Often protected or private derivation is used to hide the base
class from the users of the derived class.

CPSC 427, Lecture 23 19/42

Outline Linear STL & Poly Design Patterns

What are the problems with simple derivation?

I Several objects derived from the same base type have little in
common except for the embedded base type object in each.

I A base type pointer can only access the embedded base type
object. The rest of the derived object is present but invisible.
This is called slicing, where the derived part is conceptually
“sliced off”.

CPSC 427, Lecture 23 20/42

Outline Linear STL & Poly Design Patterns

What is polymorphic derivation good for?

I Polymorphic derivation allows for variability among objects
with a common interface.

I The base class (possibly pure abstract) defines the interface.

I Each derived class defines a variant or implementation of the
interface.

Some uses for polymorphic derivation.

I Heterogeneous containers. Example: An array of different
kinds of employees.

I A mechanism whereby old code can call new code. By
deriving from a predefined interface, existing functions that
call virtual functions of the base class end up invoking new
user-provided code.

CPSC 427, Lecture 23 21/42

Outline Linear STL & Poly Design Patterns

What are the problems of polymorphic derivation?

Every polymorphic base class (containing even one virtual
function) adds a runtime type tag to each instance.

This costs in both time and space.

I Time: Each call to a virtual function goes through a run-time
dispatch table (the vtable).

I Space: Each instance of a polymorphic object contains a type
tag, which takes extra space.

I Every polymorphic base class should have a virtual

destructor.

CPSC 427, Lecture 23 22/42

Outline Linear STL & Poly Design Patterns

Contrasts between simple and polymorphic derivation

Simple derivation:

I Low cost.

I Extends the base class.

I Derived class is the public interface; base class is a helper.

I Slicing is generally avoided as being not useful.

Polymorphic derivation:

I Higher cost.

I Implements the base class (in possibly multiple ways).

I Base class is the public interface; derived classes are helpers.

I Slicing is encouraged; virtual functions provide access to
underlying derived class objects.

CPSC 427, Lecture 23 23/42

Outline Linear STL & Poly Design Patterns

Containment as an alternative to simple derivation

Often the same class can be implemented using either containment
or derivation.

Derivation:

class A { ... f() ... };

class B: public A { ... g() { f() ... } };

A’s public member functions are inherited by B.

Containment:

class A { ... f() ... };

class B { private: A a; ... g() { a.f() ... }

public: f() { return a.f(); } };

Access to A’s public member functions requires a “pass-through”
function for delegation.

CPSC 427, Lecture 23 24/42

Outline Linear STL & Poly Design Patterns

Argument for containment

Containment is a more distant relationship than derivation.

Less coupling between classes is safer and less error-prone.

Using containment, derived class is explicit about what is exported.

For more info, see http://www.gotw.ca/publications/mill06.htm.

CPSC 427, Lecture 23 25/42

http://www.gotw.ca/publications/mill06.htm

Outline Linear STL & Poly Design Patterns

STL container as a base class

We apply these concepts to STL base classes.

Base classes are simple, not polymorphic (no virtual functions, no
virtual destructor).

This means that they should only be used with simple derivation.
They are not suitable as base classes for polymorphic derivation.

Often containment is preferable, but the large number of member
functions they support makes it cumbersome to get the same
degree of functionality in the derived class as comes “for free” with
derivation.

CPSC 427, Lecture 23 26/42

Outline Linear STL & Poly Design Patterns

Can I turn an STL container into a polymorphic base class?
Yes, sort of. Here’s the idea.

#include <iostream>

#include <vector>

using namespace std;

class MyVectorInt : public vector<int> {

public:

MyVectorInt() : vector<int>() {}

virtual ~MyVectorInt() {

cout << "Base class destructor is called" << endl; }

};

class Derived : public MyVectorInt {

public:

~Derived() {

cout << "Derived destructor is called" << endl; }

};

CPSC 427, Lecture 23 27/42

Outline Linear STL & Poly Design Patterns

A polymorphic base class

MyVectorInt is a polymorphic base class with virtual destructor
and can be used as such.

int main() {

MyVectorInt* p; // a polymorphic pointer

Derived* obj = new Derived(); // a derived object

p = obj; // ok to assign

delete p; // ok to delete; destructors called

}

CPSC 427, Lecture 23 28/42

Outline Linear STL & Poly Design Patterns

Dynamic cast

It is always okay to cast a pointer to a derived class into a pointer
to the base class, as in the previous example.

The reverse is only semantically meaningful if the allocated type of
the object actually is the type to which it is being cast. In that
case, one can use a dynamic cast to effect the conversion.

MyVectorInt* p;

Derived* q;

...

q = dynamic_cast<Derived*>(p);

dynamic cast returns NULL if p is pointing to something that
does not have dynamic type Derived*.

CPSC 427, Lecture 23 29/42

Outline Linear STL & Poly Design Patterns

Design Patterns

CPSC 427, Lecture 23 30/42

Outline Linear STL & Poly Design Patterns

General OO principles

1. Encapsulation Data members should be private. Public
accessing functions should be defined only when absolutely
necessary. This minimizes the ways in which one class can
depend on the representation of another.

2. Narrow interface Keep the interface (set of public functions)
as simple as possible; include only those functions that are of
direct interest to client classes. Utility functions that are used
only to implement the interface should be kept private. This
minimizes the chance for information to leak out of the class
or for a function to be used inappropriately.

3. Delegation A class that is called upon to perform a task
often delegates that task (or part of it) to one of its members
who is an expert.

CPSC 427, Lecture 23 31/42

Outline Linear STL & Poly Design Patterns

What is a design pattern?

A pattern has four essential elements.1

1. A pattern name.

2. The problem, which describes when to apply the pattern.

3. The solution, which describes the elements, relations, and
responsibilities.

4. The consequences, which are the results and tradeoffs.

1Erich Gamma et al., Design Patterns, Addison-Wesley, 1995.)

CPSC 427, Lecture 23 32/42

Outline Linear STL & Poly Design Patterns

Adaptor pattern

Sometimes a toolkit class is not reusable because its interface does
not match the domain-specific interface an application requires.

Solution: Define an adapter class that can add, subtract, or
override functionality, where necessary.

CPSC 427, Lecture 23 33/42

Outline Linear STL & Poly Design Patterns

Adaptor diagram

There are two ways to do this; on the left is a class adapter, on the
right an object adapter.

Target

ClassAdaptor

request()

request()

Adaptee

rightAction_wrongName()

ClassAdaptor::request() {
 rightAction_wrongName();
}

Client

ObjectAdaptor::request() {
 a->rightAction_wrongName();
}

Target

ObjectAdaptor

Adaptee

rightAction_wrongName()

request()

request()

Client

Adaptee* a

CPSC 427, Lecture 23 34/42

Outline Linear STL & Poly Design Patterns

Indirection

This pattern is used to decouple the application from the
implementation where an implementation depends on the interface
of some low-level device.

Goal is to make the application stable, even if the device changes.

AirlineSeat

if_seat()
reserve_seat()
free_seat()
...

Modem

dial();
receive();
send()
...

System API calls:
 open_port(int);
 dial(phonenumber);

Modem::dial(phonenumber)
{
 :: open_port(1);
 :: dial(2039821234);
}

calls calls

CPSC 427, Lecture 23 35/42

Outline Linear STL & Poly Design Patterns

Proxy pattern

This pattern is like Indirection, and is used when direct access to a
component is not desired or possible.

Solution: Provide a placeholder that represents the inaccessible
component to control access to it and interact with it. The
placeholder is a local software class. Give it responsibility for
communicating with the real component.

Special cases: Device proxy, remote proxy. In Remote Proxy, the
system must communicate with an object in another address space.

CPSC 427, Lecture 23 36/42

Outline Linear STL & Poly Design Patterns

Polymorphism pattern

In an application where the abstraction has more than one
implementation, define an abstract base class and one or more
subclasses.

Let the subclasses implement the abstract operations.

This decouples the implementation from the abstraction and allows
multiple implementations to be introduced, as needed.

CPSC 427, Lecture 23 37/42

Outline Linear STL & Poly Design Patterns

Polymorphism diagram

UndergradStudent

register(course) { ... }

Student

register(course) =0

Alumnus

register(course) { ... }register(course) { ... }

GradStudent

CPSC 427, Lecture 23 38/42

Outline Linear STL & Poly Design Patterns

Controller

A controller class takes responsibility for handling a system event.

The controller should coordinate the work that needs to be done
and keep track of the state of the interaction. It should delegate
all other work to other classes.

CPSC 427, Lecture 23 39/42

Outline Linear STL & Poly Design Patterns

Three kinds of controllers

A controller class represents one of the following choices:

I The overall application, business, or organization (facade
controller).

I Something in the real world that is active that might be
involved in the task (role controller).
Example: A menu handler.

I An artificial handler of all system events involved in a given
use case (use-case controller).
Example: A retail system might have separate controllers for
BuyItem and ReturnItem.

Choose among these according to the number of events to be
handled, cohesion and coupling, and to decide how many
controllers there should be.

CPSC 427, Lecture 23 40/42

Outline Linear STL & Poly Design Patterns

Bridge pattern

Bridge generalizes the Indirection pattern.

It is used when both the application class and the implementation
class are (or might be) polymorphic.

Bridge decouples the application from the polymorphic
implementation, greatly reducing the amount of code that must be
written, and making the application much easier to port to
different implementation environments.

CPSC 427, Lecture 23 41/42

Outline Linear STL & Poly Design Patterns

Bridge diagram

In the diagram below, we show that there might be several kinds of
windows, and the application might be implemented on two
operating systems. The bridge provides a uniform pattern for doing
the job.

ImageWindow

Window

DialogWindow

draw_box()

draw_text()
draw_rectangle()

draw_border()

WIP : WindowImp*

XWindowImp WindowNTImp

WindowImplementation

imp_draw_text()
imp_draw_rectangle()

=0
=0

imp_draw_text();
imp_draw_rectangle();

imp_draw_text();
imp_draw_rectangle();

DialogWindow::draw_box() {
 draw_rectangle();
 draw_text();
}

ImageWindow::draw_border() {
 draw_rectangle();
}

Window::draw_text() {
 WIP->draw_text();
}

CPSC 427, Lecture 23 42/42

	Linear Container Design
	STL and Polymorphism
	Design Patterns

