
Outline Design Patterns (continued) GUI gtkmm

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 24
April 26, 2016

CPSC 427, Lecture 24 1/31

Outline Design Patterns (continued) GUI gtkmm

Design Patterns (continued)

Graphical User Interfaces

The gtkmm Framework

CPSC 427, Lecture 24 2/31

Outline Design Patterns (continued) GUI gtkmm

Design Patterns (continued)

CPSC 427, Lecture 24 3/31

Outline Design Patterns (continued) GUI gtkmm

Subject-Observer or Publish-Subscribe: problem

Problem: Your application program has many classes and many
objects of some of those classes. You need to maintain consistency
among the objects so that when the state of one changes, its
dependents are automatically notified. You do not want to
maintain this consistency by using tight coupling among the
classes.

Example: An OO spreadsheet application contains a data object,
several presentation “views” of the data, and some graphs based
on the data. These are separate objects. But when the data
changes, the other objects should automatically change.

CPSC 427, Lecture 24 4/31

Outline Design Patterns (continued) GUI gtkmm

Subject-Observer or Publish-Subscribe: pattern

Call the SpreadsheetData class the subject; the views and graphs
are the observers.

The basic Spreadsheet class composes an observer list and provides
an interface for attaching and detaching Observer objects.

Observer objects may be added to this list, as needed, and all will
be notified when the subject (SpreadsheetData) changes.

We derive a concrete subject class (SpreadsheetData) from the
Spreadsheet class. It will communicate with the observers through
a get state() function, that returns a copy of its state.

CPSC 427, Lecture 24 5/31

Outline Design Patterns (continued) GUI gtkmm

Subject-Observer or Publish-Subscribe: diagram

Bargraph::update() {
 observer_state =
 SS->get_state();
}

Spreadsheet::notify() {
 OL.updateall()
}

ObserverList::updateall() {
 for all x in the list,
 x->update()
}

FullDataView

AnnualReport

BarGraph

update();

observer_state
SpreadsheetData*

attach(observer)
detach(observer)
notify()
...

ObserverList

updateall()

SpreadsheetData

+ get_state()
- subject_state

OL: Observer List
Observer

update() =0

*Spreadsheet
SS: Spreadsheet*

See textbook for more details.

CPSC 427, Lecture 24 6/31

Outline Design Patterns (continued) GUI gtkmm

Singleton pattern

Suppose you need exactly one instance of a class, and objects in all
parts of the application need a single point of access to that
instance.

Solution: A single object may be made available to all objects of
class C by making the singleton a static member of class C.

A class method can be defined that returns a reference to the
singleton if access is needed outside its defining class.

CPSC 427, Lecture 24 7/31

Outline Design Patterns (continued) GUI gtkmm

StringStore example

static member StringStore& StringStore::getStore(){
 if (instance==NULL) instance = new StringStore;
 return instance;
}static method

StringStore
-$ instance *
- other members...
+$ getStore() : StringStore&

Example: Suppose several parts of a program need to use a
StringStore. We might define StringStore as a singleton class.

The StringStore::put() function is made static and becomes
a global access point to the class, while maintaining full protection
for the class members.

CPSC 427, Lecture 24 8/31

Outline Design Patterns (continued) GUI gtkmm

Graphical User Interfaces

CPSC 427, Lecture 24 9/31

Outline Design Patterns (continued) GUI gtkmm

User Interfaces

Modern computer systems support two primary general-purpose
user interfaces:

Command line: User input is via a command line typed at the
keyboard. Output is character-based and goes to a
physical or simulated typewriter-like terminal.

Graphical User Interface (GUI): User input is via a pointing device
(mouse), button clicks, and keyboard. Output is
graphical and goes to a window on the screen.

CPSC 427, Lecture 24 10/31

Outline Design Patterns (continued) GUI gtkmm

Interfaces for C++
The C++ standard specifies a command line interface: iostream

and associated packages. No similar standard exists for GUIs.

De facto GUI standards in the Linux world are GTK+ (used by the
Gnome desktop) and Qt (used by the KDE desktop).

GTK+ is based on C; Qt is based on an extension of C++ and
requires a special preprocessor.

gtkmm is a C++ wrapper on top of GTK+.

Advantages: Provides type safety, polymorphism, and subclassing.
Provides a native interface to C++ code.

Disadvantages: Components not so well integrated.
Documentation spread between gtkmm, gtk+, and
other components but improving.

CPSC 427, Lecture 24 11/31

Outline Design Patterns (continued) GUI gtkmm

Overall Structure of a GUI

A GUI manages one or more windows.

Each window displays one or more widgets.
These are objects that provide graphical and textual input and
output to the program.

A GUI package such as gtkmm maintains a widget tree.

A widget controls a particular kind of user input or output.
Examples: label, text box, drawing area, button, scroll bar, etc.

CPSC 427, Lecture 24 12/31

Outline Design Patterns (continued) GUI gtkmm

Concurrency and Events

The central problem in building a GUI is handling concurrency.

Data arrives from multiple concurrent sources – mouse and
keyboard, network, disk, other threads, etc.

We call the arrival of a piece of data an event.

I Event arrival times are unpredictable.

I Events should be processed as quickly as possible.

For example, to have a good interactive feel, the GUI should
respond to a mouse click event within milliseconds.

CPSC 427, Lecture 24 13/31

Outline Design Patterns (continued) GUI gtkmm

Event Loop

An event loop allows a single thread to manage a set of events.

At some level, the hardware or software polls for events.

When an event is detected, it is dispatched to an event handler.

The event handler either processes the event itself, queues a task
for later processing, or spawns a thread to process it.

While the event thread is processing one event, no other events
can be processed, so event handlers should be short.

Problem is to prevent a long-running low-priority event handler
from delaying the handling of a high-priority event.

CPSC 427, Lecture 24 14/31

Outline Design Patterns (continued) GUI gtkmm

A GUI event structure

A GUI typically translates raw hardware events into
semantically-meaningful software events.

For example, a mouse click at particular screen coordinates might
turn into a button-pressed event for some widget in the GUI tree.

Several system layers may be involved in this translation, from the
kernel processing of hardware interrupts at the bottom level, up
through device drivers, windowing systems such as X, and finally a
GUI frameworks such as GTK+.

CPSC 427, Lecture 24 15/31

Outline Design Patterns (continued) GUI gtkmm

Interface between user and system code

A major software challenge is how to design the interface between
the GUI and the user code that ultimately deals with the events.

In a command-line interface, the user code is at the top level.
It connects to the lower layers through familiar function calls.

With a GUI, things are turned upside down.

I The top level is the main event loop.

I It connects to the user by calling appropriate user-defined
functions.

CPSC 427, Lecture 24 16/31

Outline Design Patterns (continued) GUI gtkmm

Binding system calls to user functions

How can one write the GUI to call user functions that did not even
exist when the GUI system itself was written?

The basic idea is that of interface.

I The interface is a placeholder for the eventual user functions.

I It describes what functions the user will provide and how to
call them but not what the functions themselves are.

I The interface is bound to user code either when the user code
is compiled or dynamically at runtime.

CPSC 427, Lecture 24 17/31

Outline Design Patterns (continued) GUI gtkmm

Polymorphic binding

C++ virtual functions provide an elegant way to bind user code to
an interface.

I The GUI can provide a virtual default event handler.

I The user can override the default handler in a derived class.

Of course, the actual binding occurs at run time through the use of
type tags and the vtable as we have seen before.

CPSC 427, Lecture 24 18/31

Outline Design Patterns (continued) GUI gtkmm

Binding through callback registration

The user explicitly registers an event handler with the GUI by
calling a special registration function.

I The GUI keeps track of the event handler(s) registered for a
particular event.

I When the event happens, it calls all registered event handlers.

This is sometimes called a callback mechanism since the user asks
to be called back when an event occurs.

CPSC 427, Lecture 24 19/31

Outline Design Patterns (continued) GUI gtkmm

Callback using function pointers: GUI side

Callbacks can be done directly in C . Here’s the GUI code:

1. Define the signature of the handler function:
typedef void (*handler t)(int, int);

2. Declare a function pointer in which to save the handler:
handler t buttonPressHandlerPtr;

3. Define a registration function:
void systemRegister(int slot, handler t f) {
button press handler ptr = f;

}
4. Perform the callback:

buttonPressHandlerPtr(23, 45);

CPSC 427, Lecture 24 20/31

Outline Design Patterns (continued) GUI gtkmm

Callback using function pointer: User side

Here’s how the user attaches a handler to the GUI:

1. Create an event handler:
void myHandler(int x, int y) {
printf("My handler (%i, %i) called\n", x, y);

}
2. Register the handler for event 17:

systemRegister(17, myHandler);

CPSC 427, Lecture 24 21/31

Outline Design Patterns (continued) GUI gtkmm

Type safety

The above scheme does not generalize well to multiple events with
different signatures.

I Registered handlers need to be stored in some kind of
container.

I For type safety, each different handler signature requires a
different event container and registration function of the
corresponding signature.

The alternative is for systemRegister() to take a void* for its
second argument and to cast function pointers before call them.

This is not type safe and can lead to subtle bugs if the wrong type
of function is attached to a callback slot.

CPSC 427, Lecture 24 22/31

Outline Design Patterns (continued) GUI gtkmm

Signals and slots

Signals and slots is a more abstract way of linking events to
handlers and can be implemented in a type safe way.

I A connect() template function is used to bind a signal to a
slot.

I An event emits a signal.

I A handler is associated with a slot.

I Whenever the event occurs, the functions associated with all
connected slots are called.

Several signals can be connected to the same slot, and several slots
can be connected to the same signal.

CPSC 427, Lecture 24 23/31

Outline Design Patterns (continued) GUI gtkmm

The gtkmm Framework

CPSC 427, Lecture 24 24/31

Outline Design Patterns (continued) GUI gtkmm

Structure of gtkmm

gtkmm relies on several libraries and packages:

I gtkmm-3.0 is the GUI engine.

I gdkmm is a device layer used by gtk.

I cairomm is a vector graphics drawing package.

I pango is a library for laying out and rendering of text, with an
emphasis on internationalization.

I sigc++ is a library for connecting events (signals) to event
handlers (slots).

CPSC 427, Lecture 24 25/31

Outline Design Patterns (continued) GUI gtkmm

Compiling a gtkmm program

Many include files and libraries are needed to compile and build a
gtkmm program.

A utility pkg-config is used to generate the necessary command
line for the compiler.

CPSC 427, Lecture 24 26/31

Outline Design Patterns (continued) GUI gtkmm

> pkg-config gtkmm-3.0 --cflags

-pthread

-I/usr/include/gtkmm-3.0 -I/usr/lib64/gtkmm-3.0/include

-I/usr/include/atkmm-1.6 -I/usr/include/gtk-3.0/unix-print

-I/usr/include/gdkmm-3.0 -I/usr/lib64/gdkmm-3.0/include

-I/usr/include/giomm-2.4 -I/usr/lib64/giomm-2.4/include

-I/usr/include/pangomm-1.4 -I/usr/lib64/pangomm-1.4/include

-I/usr/include/glibmm-2.4 -I/usr/lib64/glibmm-2.4/include

-I/usr/include/gtk-3.0 -I/usr/include/at-spi2-atk/2.0

-I/usr/include/at-spi-2.0 -I/usr/include/dbus-1.0

-I/usr/lib64/dbus-1.0/include -I/usr/include/gtk-3.0

-I/usr/include/gio-unix-2.0/ -I/usr/include/cairo

-I/usr/include/pango-1.0 -I/usr/include/harfbuzz

-I/usr/include/pango-1.0 -I/usr/include/atk-1.0

-I/usr/include/cairo -I/usr/include/cairomm-1.0

-I/usr/lib64/cairomm-1.0/include -I/usr/include/cairo

-I/usr/include/pixman-1 -I/usr/include/freetype2

-I/usr/include/libpng16 -I/usr/include/freetype2

-I/usr/include/libdrm -I/usr/include/libpng16

-I/usr/include/sigc++-2.0 -I/usr/lib64/sigc++-2.0/include

-I/usr/include/gdk-pixbuf-2.0 -I/usr/include/libpng16

-I/usr/include/glib-2.0 -I/usr/lib64/glib-2.0/include

CPSC 427, Lecture 24 27/31

Outline Design Patterns (continued) GUI gtkmm

Linking a gtkmm program

> pkg-config gtkmm-3.0 --libs
generates the necessary linker flags.
-lgtkmm-3.0 -latkmm-1.6 -lgdkmm-3.0 -lgiomm-2.4

-lpangomm-1.4 -lglibmm-2.4 -lgtk-3 -lgdk-3

-lpangocairo-1.0 -lpango-1.0 -latk-1.0 -lcairo-gobject

-lgio-2.0 -lcairomm-1.0 -lcairo -lsigc-2.0

-lgdk_pixbuf-2.0 -lgobject-2.0 -lglib-2.0

To use package config, use the backquote operator on the g++

command line:

Compiling: g++ -c ‘pkg-config gtkmm-3.0 --cflags‘ ...

Linking: g++ ‘pkg-config gtkmm-3.0 --libs‘ ...

Both: g++ ‘pkg-config gtkmm-3.0 --cflags --libs‘ ...

CPSC 427, Lecture 24 28/31

Outline Design Patterns (continued) GUI gtkmm

Using a GUI

The following steps are involved in creating a GUI using gtkmm:

1. Initialize gtkmm.

2. Create a window.

3. Create and lay out widgets within the window.

4. Connect user code to events.

5. Show the widgets.

6. Enter the main event loop.

The GUI then displays the window and waits for events.
When an event occurs, the corresponding user code is run.
When the event handler returns, the GUI waits for the next event.

CPSC 427, Lecture 24 29/31

Outline Design Patterns (continued) GUI gtkmm

Example: clock

The code example 24d-clock is a significant extension of the
clock example in the gtkmm tutorial book.

It illustrates many of the features of gtkmm.

CPSC 427, Lecture 24 30/31

Outline Design Patterns (continued) GUI gtkmm

Main program

#include <gtkmm.h>

#include "clockwin.hpp"

int main(int argc, char* argv[])

{

auto app =

Gtk::Application::create(argc, argv, "org.gtkmm.examples");

ClockWin win;

return app->run(win);

}

CPSC 427, Lecture 24 31/31

	Design Patterns (continued)
	Graphical User Interfaces
	The gtkmm Framework

