
Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 25
May 3, 2016

CPSC 427, Lecture 25 1/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Extended Objects, Custody, and the Double Delete Problem

New Features of C++ 11

CPSC 427, Lecture 25 2/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Extended Objects, Custody, and the Double

Delete Problem

CPSC 427, Lecture 25 3/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Moving data

Much of computation involves moving data around.

Almost all non-functional languages support the assignment
operator.

Assignment copies a value from the right hand side (RHS) to the
variable on the left hand side (LHS).

After the assignment, there are two copies of the RHS value.

CPSC 427, Lecture 25 4/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Temporaries

Conceptually, a pure value is a disembodied piece of information
floating in space.

In reality, values always exist somewhere—in variables or in
temporary registers.

Languages such as Java distinguish between primitive values like
characters and numbers that can live on the stack, and object
values that live in permanent storage and can only be accessed via
pointers.

CPSC 427, Lecture 25 5/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Custody

Primitive values are relatively small. Objects can be large. Objects
with dynamic extensions can be huge, if the size of the extension is
taken into account.

Copying large objects is expensive!

CPSC 427, Lecture 25 6/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

How to avoid copying large objects

Java approach: Assignment copies pointers, not the underlying
object.

To make a copy of the object itself, one creates a new object and
initializes it from the old.

Problem of custody arises: Who is responsible for managing and
eventually freeing the storage occupied by large objects and their
dynamic extensions?

CPSC 427, Lecture 25 7/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Java approach

In Java, the custody problem is avoided by letting the system own
all objects and relying on the garbage collector to decide when an
object may be deleted.

This entails a huge performance penalty. Two options, both
expensive:

I Traditional garbage collector runs when needed, causing large
unpredictable latencies.

I Concurrent garbage collector runs continuously in another
core, consuming a fraction of the entire CPU for this one
purpose.

CPSC 427, Lecture 25 8/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Original C++ approach

The C++ approach is to have the class manage its own dynamic
storage.

The constructor allocates the storage; the destructor deletes it.

The programmer is responsible for ensuring that the storage
management is done properly.

CPSC 427, Lecture 25 9/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Double delete problem

How to do assignment—two approaches:

I Shallow copy: Copy the data members, not the dynamic
extensions. This results in each copy sharing the same
extension.

When any copy is deleted, its destructor deletes the extension.

If there are multiple copies, the extension is deleted multiple
times, leading to memory management errors. This is called
the double delete problem.

I Deep copy: Copy both the data members and the dynamic
extensions.

Avoids the double delete problem but at great cost.

CPSC 427, Lecture 25 10/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Move semantics

C++ 11 introduces move semantics.

An object can be moved instead of copied. The data in the source
object is removed from the source object and placed in the target
object. The source object then becomes empty.

In the case of dynamic extensions, the pointer to the extension is
copied from source to target, and the source pointer is set to
nullptr.

Deleting nullptr is a no-op and causes no problems.

We say that custody has been transferred from source to target.

CPSC 427, Lecture 25 11/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Motivation

A big motivation for move semantics comes from containers such
as vector.

Containers need to be able to move objects around. Old-style
containers can’t work with dynamic extensions.

C++ containers support moving an object into or out of the
container.

While in the container, the container has custody of the object.

Move is like a shallow copy, but it avoids the double-delete
problem.

CPSC 427, Lecture 25 12/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Implementation in C++

Here are the changes to C++ that enable move semantics.

1. The type system has been extended to include rvalue
references. These are denoted by double ampersand, e.g.,
int&&.

2. Results in temporaries are marked as having rvalue reference
type.

3. A class has now six required functions: constructor,
destructor, copy constructor, copy assignment, move
constructor, move assignment.

CPSC 427, Lecture 25 13/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Move and copy constructors and assignment operators

Copy and move constructors are distinguished by their prototypes.

class A:

I Copy constructor: A(const A& other) { ...}
I Move constructor: A(A&& other) { ...}

Similarly, copy and move assignment operators have dfiferent
prototypes.

class A:

I Copy assignment: A& operator=(const A& other) {
...}

I Move assignment: A& operator=(A&& other) { ...}

CPSC 427, Lecture 25 14/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Default constructors and assignment operators

Under some conditions, the system will automatically create
default move and copy constructors and assignment operators.

The default copy constructors and copy assignment operators do a
shallow copy. Data members that are objects of type T are copied
using the copy constructor/assignment operator defined for class T.

The default move constructors and move assignment operators do
a shallow copy. Data members that are objects of type T are
moved using the move constructor/assignment operator defined for
class T.

Default definitions can be specified or inhibited by use of the
keywords =default or =delete.

CPSC 427, Lecture 25 15/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Moving from a temporary object

A mutable temporary object always has rvalue reference type.

Thus, the following code moves the temporary string created by
the on-the-fly constructor string("cat") into the vector v:

#include <string>

#include <vector>

vector<string> v;

v.push_back(string("cat"));

CPSC 427, Lecture 25 16/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

Forcing a move from a non-temporary object

The function std::move() in the utility library can be used to
force a move from a non-temporary object.

The following code moves the string in s into the vector v. After
the move, s contains the null string.

#include <iostream>

#include <string>

#include <utility>

#include <vector>

vector<string> v;

string s;

cin >> s;

v.push_back(move(s));

CPSC 427, Lecture 25 17/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

The full story

I’ve covered the most common uses for rvalue references, but there
are many subtle points about how defaults work and what happens
in unusual cases.

A good reference for further information is Move semantics and
rvalue references in C++11 by Alex Allain.

CPSC 427, Lecture 25 18/20

http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

New Features of C++ 11

CPSC 427, Lecture 25 19/20

Outline Extended Objects, Custody, and the Double Delete Problem New Features of C++ 11

C++ 11 extensions

There are many other significant new features in C++ 11 besides
move semantics. Here are some of the more important ones:

I Lambda expressions

I Automatic type deduction and decltype

I Initialization syntax

I Deleted and defaulted functions

I nullptr

I Delegating constructors

I C++11 standard library: threading, smart pointers, algorithms

I Range-based for loops

See The Biggest Changes in C++11 (and Why You Should Care)
by Danny Kalev for a discussion and examples.

CPSC 427, Lecture 25 20/20

http://blog.smartbear.com/c-plus-plus/the-biggest-changes-in-c11-and-why-you-should-care

	Extended Objects, Custody, and the Double Delete Problem
	New Features of C++ 11

