
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 427: Object-Oriented Programming Handout #1
Professor M. J. Fischer August 26, 2018

Syllabus (Fall 2018)

1 Official Yale course listing

CPSC 427 01 (10690) /
CPSC 527 01 (12215)
Object-Oriented Programming
Michael Fischer
MW 4.00–5.15 WLH 119

Fall 2018
Final exam 12/17/2018 at 7pm

Object-oriented programming as a means to efficient, reliable, modular, reusable code.
Use of classes, derivation, templates, name-hiding, exceptions, polymorphic functions,
and other features of C++.

After CPSC 223.

2 Course Description

2.1 Industrial Strength Programming

Programming, broadly defined, is the activity of getting a computer to perform a desired task. It
generally takes the form of constructing an artifact, called a program, which in turn instructs the
computer in the sequence of steps needed to carry out the task. The program is expressed in a
programming language.

The primary requirement of any program is that it correctly performs the desired task. For
many small applications, the task is easily described, and the goal of the programmer is to get the
job done as quickly and easily as possible. This is typical of homework assignments in beginning
programming courses. The specification is provided by the instructor, and the overriding concern
of the student is to have something to turn in by the deadline. Small throwaway jobs occur in the
real world, too, where the primary goal is to get answers quickly to one-off problems. Succinct
interpretive languages such as Python and JavaScript are often well-suited to such applications.

By way of contrast, large software systems typically have lifetimes measured in decades. They
are built over time by teams of programmers. Programmers come and go. The people who create
these systems are often not the same as the people who maintain them over the years. The systems
must run correctly in a variety of hardware and software environments. They are not static but are
continually evolving to meet changing needs.

They need to do much more than just produce correct outputs. They must also be:
1. Convincingly correct. It’s not enough that the program be correct; there must also be con-

fidence that it is correct. Such confidence is achieved through a combination of proper use
of language constructs such as type systems to enforce constraints, formal verification tools,
human understanding of the code, and thorough testing.

2. Maintainable. The program must be understandable by humans other than the original de-
velopers. This requires that the program be modular, clean, elegant, and well documented.
As in any design process, style and judgment are important to the finished product.

https://directory.yale.edu/?queryType=term&pattern=michael%20fischer


2 Syllabus (Fall 2018)

3. Efficient. The program must perform its task within the available resources such as time,
memory, communication bandwidth, etc.

4. Reliable. The program must be robust in the face of unexpected program inputs, runtime
errors, and changes in requirements during a program’s lifecycle. It must handle known risks
predictabily and unknown risks gracefully. It is rarely acceptable for a large system to crash
in response to error conditions.

5. Secure. The program must resist a malicious adversary who deliberately attempts to cause it
to fail or misbehave or to otherwise violate its intended properties.

6. Deployable. The program’s dependencies on its environment must be clearly specified and
easily satisfied on target systems. Maintaining backwards compatibility as new features are
added aids in achieving this goal.

7. Free of code replication. Code that is needed in more than one part of a program should
appear only once and be referenced appropriately where needed. Replicated code sections
are particularly difficult to debug and maintain. A bug that is fixed in one copy will remain
unfixed in undiscovered replicas.

Since good software is expensive to construct and maintain, an additional goal is that it be reusable
in other applications.

Experience shows that a disciplined software development process is needed in order to produce
software that achieves these goals throughout its lifecycle. How to economically develop and main-
tain large systems that are useful in real-world applications is the realm of software engineering,
covered by Yale course CPSC 439.

This course focuses on software design and construction, namely, the process of defining and
implementing the architecture, components, interfaces, and other characteristics of the software
artifact that implements the design specification.

2.2 Topics and Emphasis

This course will use the version of the C++ programming language known as C++17. C++ is large
and complicated. It contains many features that allow it to be used to satisfy the requirements stated
above, but they don’t ensure good code. These same features can be misused to create code that is
opaque and indecipherable. A good understanding of the language is necessary in order to reap its
benefits.

The course will cover many C++ concepts, explaining for each what the purpose is, some of
its intended uses, and some of the pitfalls it presents. Topics include design principles and stan-
dards, the C/C++ memory model, objects and classes, constructors and destructors, types, casts
and conversions, operator definitions, name-hiding, restrictions on data modification, derivation
and inheritance, abstract classes, polymorphism, virtual functions, multiple inheritance, templates,
exceptions, and the C++ Standard Library. The course may also touch on some other major class
libraries such as Boost, GTK+, and gtkmm. Other topics as time permits include advanced design
patterns, programming for efficiency and testability, performance measurement, and debugging.

These topics will be reinforced by frequent programming assignments. The goal of the assign-
ments will be to learn how to apply design principles to actual code. Submissions will be judged on
their design, style, cleanliness, and understandability as well as on their functionality and on their
adherence to specific requirements of the assignments.

https://en.wikipedia.org/wiki/C++_Standard_Library
https://en.wikipedia.org/wiki/Boost_(C++_libraries)
https://en.wikipedia.org/wiki/GTK+
https://www.gtkmm.org


Handout #1—August 26, 2018 3

3 Course materials

This course has no required textbook. Rather, supplementary material is either publicly available
on the internet, isposted to the CPSC 427 Zoo web site for use by this class, or is a licensed online
book for which free access is available to the Yale community through a licensing arrangement. See
information about off campus access to learn how to access licensed materials when you are not on
the Yale network.

Primary References:

1. Alice E. Fischer, David W. Eggert, and Michael J. Fischer, Applied C and C++ Programming,
manuscript, 2018.
This covers basic material on C/C++ program that is typically covered in introductory and
intermediate programming courses and in data structures. If you don’t know C already or
would like a deeper understanding of it, then this is a good book for getting up to speed.

2. A. Fischer, Exploring C++, manuscript, 2009.
This book gives a comprehensive overview of the tools that C++ provides for writing indus-
trial strength programs. It’s primary drawback is that it is already nine years old, so it doesn’t
cover important new features added to the language by the C++11, C++14, and C++17,
standards.

3. Internet website http://cplusplus.com is a good source of introductory, tutorial, and
reference materials on C++. It is generally up to date and accurate, and I encourage you to
become familiar with it.
Registration is not required to view the site, and because the site does not support secure
web connections (https://), I would not recommend registration on an insecure site that
requires sending passwords over the internet.

4. Internet website https://cppreference.com is a comprehensive reference site for
C++. I find it more precise but less readable than cplusplus.com, but both are definitive
places to learn about fine points of C++ and are highly recommended.

Other References: The following books are licensed by Yale for use by the Yale community. The
links below will give free access to the books when you are on the Yale network. To access from
off-campus locations, you will need to use the Yale VPN. To know that you have licensed access,
you should see “Yale University” in the blue menu bar next to the “Personal Sign In” menu. If you
don’t see it, click on “Sign In”, then on the “Start Using Safari” under the Academic License, and
then try the original link again.

1. Scott Meyers, Effective STL, Addison-Wesley Professional, 2001, ISBN-13: 978-0-321-
54518-3.
This book is rather out of date but gives some advice that is still relevant.

2. Scott Meyers, Effective Modern C++. O’Reilly Media, Inc., 2014, ISBN-13: 978-1-4919-
0399-5.
This book explains many of the important new features of C++11 and C++14. It will be
mainly useful during the latter part of the term.

https://web.library.yale.edu/help/off-campus-access-vpn
https://zoo.cs.yale.edu/classes/cs427/2018f/apc.html
https://zoo.cs.yale.edu/classes/cs427/2018f/ExploringCpp.html
http://cplusplus.com
https://cppreference.com
https://web.library.yale.edu/help/off-campus-access-vpn
https://proquest.safaribooksonline.com/book/programming/cplusplus/9780321545183/cover-page/coverid?uicode=yaleu
https://proquest.safaribooksonline.com/book/programming/cplusplus/9781491908419/cover/cover_html?uicode=yaleu


4 Syllabus (Fall 2018)

Beware of the many web sites out there that have C++ information that is outdated, incomplete,
or just plain wrong. Not only are many people misinformed about how the language actually works,
but some important things have changed with the advent of C++17, so you should also be careful
about trusting out-of-date information.

4 Course Websites:

This class will use two websites:

• Canvas: https://yale.instructure.com/courses/39412

• Zoo website: https://zoo.cs.yale.edu/classes/cs427/2018f/index.html

Canvas will be used for homework assignments and submissions, grading feedback, and emailed
announcements. The Zoo website will be used for the syllabus, handouts, lecture notes, general
announcements, and other course-related materials.

5 Course Mechanics

Prerequisite: The prerequisite for this course is CPSC 223 (Data Structures) or equivalent. The
ability to write a significant program in C, C++, or Java is required. This course also assumes a
familiarity with basic computer science concepts such as are covered in CPSC 201 and CPSC 202.
Graduate students should have an equivalent background.

Requirements: Course requirements include programming assignments and/or written problem
sets (∼40%), a midterm exam (∼20%), and a final exam (∼40%). The approximate weights of each
in determining the course grade are subject to change depending on the number and difficulty of the
assignments actually given. Graduate students taking the course will be expected to perform at a
higher level than undergraduates and may be required to do additional work.

Assignments and other announcements: Written problem sets and programming assignments
will be posted from time to time on the Zoo handouts page and will be announced using Canvas.
Other course announcements will be posted on the Zoo website home page. It is your responsibility
to check these pages frequently.

Help with technical questions: The graduate teaching fellows and undergraduate learning assis-
tants will be holding scheduled office hours during the term as posted on the course web site. You
are encouraged to meet with them with questions about the lectures, textbook, problem sets, and
C++ programming generally. You may also send questions by email. Please copy the instructor on
all such emails. This will often result in a quicker response, since whoever is available at the time
can decide to answer it. The response will also go both to the TAs and to the instructor so everyone
will know that the questions have been addressed.

Other Questions: All questions about assessment and grading should be taken first to the graduate
TF. If the TF is unable to resolve your questions to your satisfaction, or if you wish to talk to me
privately about any matter, you are always welcome to contact me, either by email or in person.
Email is the preferred way to arrange an appointment with me.

https://yale.instructure.com/courses/39412
https://zoo.cs.yale.edu/classes/cs427/2018f/index.html
https://zoo.cs.yale.edu/classes/cs427/2018f/handouts.html
https://zoo.cs.yale.edu/classes/cs427/2018f/index.html
mailto:fischer-michael@cs.yale.edu


Handout #1—August 26, 2018 5

6 Policies

Late policy: Assignments will be due at 11:55 pm on the night of the stated due date. Late work
will generally be subject to a penalty of 5% per day late unless accompanied by a Dean’s excuse.
A 2-hour grace period following the original due date will be granted during which no late penalty
will be assessed. However, there will be no grace period in counting the number of days late for
assignments turned in after the grace period. Work more than 4 days late will not be accepted, but
alternative means for making up missed work may be arranged on an individual basis with a Dean’s
excuse.

Please contact the instructor as soon as you find out that you are unable to submit work on time
or to attend a scheduled exam so that suitable makeup arrangements can be made.

Policy on Working Together: This course follows the Yale College Undergraduate Regulations
and the Yale Graduate School Professional Ethics and Regulations policies regarding cheating, pla-
giarism, and documentation, with which you should familiarize yourself. Briefly, if you use some-
one else’s work, you must acknowledge it. If it’s a piece of code, place the acknowledgment in your
source file and explain clearly what parts are not your own. Similarly, if it’s in a paper or written
assignment, the acknowledgment belongs in the paper itself. All work not so acknowledged must
be your own.

You may of course discuss the lectures and readings with your classmates in order to improve
your understanding of the subject matter. Helping each other learn to use the tools in the Zoo is
also okay. However, the design and implementation of all programs and all submitted work must be
your own except where other sources are explicitly noted.

You must never let another student see your work, either before or after the due date of the as-
signment. Sometimes you may be tempted to “help” your friends by letting them see your solution.
Don’t! This doesn’t help them. To the contrary, it allows them to avoid the hard work of learning
the material and deprives them of the educational experience they came to Yale to get.

You are always free (and encouraged) to come in and ask the TAs or instructor for help about
anything concerning the course. Please talk to the instructor if you have any questions about this
policy.

Avoiding Plagiarism: You may neither copy from another student nor permit your own work to
be copied, unless explicit permission is given for such collaborations. If your work is found in the
possession of another student, you and the other student are equally guilty of plagiarism. To avoid
unintended involvement in plagiarism, your work should never be in the possession of another
student. Do not ask someone else to deliver or pick up your work. Do not let another student
“borrow” your code to compare with theirs. Keep your files protected so that others cannot read
them and carefully guard your password. Do not leave printed work in public areas such as the Zoo
or in accessible wastebaskets. If you think your password may have been compromised, you must
change it immediately and notify the instructor.

Policy on Computer Problems: The Yale College policy on “Use of Computers and Postpone-
ment of Work” in the Yale College Programs of Study, Academic Regulations, applies to this course.
It is reproduced below.

“Problems that may arise from the use of computers, software, and printers normally
are not considered legitimate reasons for the postponement of work. A student who
uses computers is responsible for operating them properly and completing work on

https://yalecollege.yale.edu/content/undergraduate-regulations
https://gsas.yale.edu/academic-professional-development/professional-ethics-regulations
http://catalog.yale.edu/ycps/academic-regulations/completion-of-course-work/
http://catalog.yale.edu/ycps/academic-regulations/completion-of-course-work/


6 Syllabus (Fall 2018)

time. (It is expected that a student will exercise reasonable prudence to safeguard ma-
terials, including backing up data in multiple locations and at frequent intervals and
making duplicate copies of work files.) Any computer work should be completed well
in advance of the deadline in order to avoid last-minute technical problems as well as
delays caused by heavy demand on shared computer resources in Yale College.”

Particularly relevant for this course are the cautions against leaving a programming assignment to
the last minute when machines might be busy, printers broken, and so forth, and about safeguarding
your data.

Policy on Technology in the Classroom: Cell phones are not to be used in class. Tablets and
laptops are allowed only for course-related activities such as note-taking, reading slides and other
materials from the course website, and quick internet searches on topics relevant to the lecture.
Their use must limited so as to not distract you from paying attention in class. If in doubt, ask
the instructor or TF first. Games, instant-messaging, reading email, and other diversions are not
permitted. You may be asked to leave the class if these rules are not followed.

7 Computing Facilities

The Zoo: This course will use the Computer Science Department’s educational computing facil-
ity, affectionately known as the Zoo. This facility contains modern workstations running Fedora
Linux 28. You will need to use these machines to prepare coursework. Look at

https://zoo.cs.yale.edu/help/

for information on getting started if you are new to the Zoo. A Zoo account will be automatically
created for you if you don’t already have one when you register as a shopper for this course.

These days, most of you have your own laptops and may be wondering why you should be
bothered with using a new computer system. The answer is because code development software is
still not completely compatible across multiple platforms. If it works on your Mac or Windows PC
but fails when the graders run it on the Zoo, you will lose points. If you ask for help with compiler
errors on your personal machine, we might not be in a position to answer your questions. If you
lack needed software that has been installed on the Zoo for your use, you’re on your own. In short,
develop your code on the Zoo! Regardless of where the code is developed, your assignments will
be graded according to how well they work on the Zoo. Submission of assignments will be through
Canvas.

The Zoo machines support remote access via the SSH and VNC protocols. These enable you to
do your work remotely when it is inconvenient to go in person to the Zoo. Instructions on how to
configure your machine for remote access will be posted to the course web site.

Course directory: The shared course directory, /c/cs427, is located on the Zoo server. You
can access it from your Zoo course account. It will contain any software needed for this course and
miscellaneous documentation and files. Public files there can be also be accessed via the web.

https://zoo.cs.yale.edu
https://zoo.cs.yale.edu/help/

	Official Yale course listing
	Course Description
	Industrial Strength Programming
	Topics and Emphasis

	Course materials
	Course Websites:
	Course Mechanics
	Policies
	Computing Facilities

