
YALE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

CPSC 427: Object-Oriented Programming Handout #2
Professor M. J. Fischer September 3, 2018

Problem Set 1

Due by 11:55 pm on Wednesday, September 12, 2018.

1 Assignment Goals

1. Learn how to prepare and build C++ code on the Zoo.

2. Learn how to customize and use tools.cpp and tools.hpp in your own code.

3. Learn good practices for labeling every code file with appropriate date, authorship,
and acknowledgments of any code fragments taken from elsewhere.

4. Learn conventions used in this course regarding the form of the main program, use of
banner() and bye() from the tools library, compiler switches, include guards, and so
forth.

5. Learn simple uses of C++ strings.

6. Learn how to do simple C++ I/O with validity check.

7. Learn how to use C library time functions from within C++.

8. Learn how to report a fatal error by calling the Fatal() function in tools.

9. Learn how to test and submit your code on the Zoo.

2 Problem

You are to write a program called aboutme that, when run, prompts the user to enter their
first name, last name, and year of birth. The program then prints out the first name, last
name, and age, which we take to be the difference between the current year and the year
of birth. Here’s what a sample run for me might look like:

Michael J. Fischer

CPSC 427/527

Sun Sep 2 2018 21:24:11

Please enter your first name: Michael

Please enter your last name: Fischer

Please enter the year of your birth: 1942

Michael Fischer becomes 76 years old in 2018.

Normal termination.

The lines before the first prompt are printed by banner(). The lines after the age line are
printed by bye().

2 Problem Set 1

3 Programming Notes

1. Copy the tools files from /c/cs427/code/tools/ into your working directory. Cus-
tomize them by editing in your own name in place of the generic “Ima Goetting
Closeau”. Be sure to submit your tools files along with your code and other required
files. Read Chapter 1 of the “Exploring C++” textbook for more information about
tools, but be warned that my version of tools differs somewhat from what is in the
textbook.

2. You should create a file main.cpp with a main function exactly as follows:

int main() {

banner();

run();

bye();

}

Your own code will go into main.cpp. Needed declarations should be placed before
the function main(). You will need to define the function run(), which should be
placed afterthe function main.1

3. You must use the standard C++ iostreams facility for your I/O. To use it, one must
#include the header file iostream. tools.hpp already does this for you, so all
you need in main.cpp is the statement #include "tools.hpp". The standard input
stream is cin; the standard output stream is cout. The input operator is >>; the
output operator is <<. Further information and examples are in the textbook.

4. There are two ways to store a string in C++ . First is as a char array as one does in C.
The other is to use the standard string library. To use it, you must #include the
header file string in your code. (Again, tools.hpp already does this for you.) This
makes string available as a new type, which you can then use to declare variables
and parameters.

A variable of type string acts just like one would expect. You can store a string
literal of any length into it. You can copy one string to another using the assignment
operator. You can print it using the << operator and read a whitespace-delimited
string into it using the >> operator. A string manages its own storage so that you do
not have to worry about allocating storage. You must use string variables to store
the first and last names to be read in.

5. Compute the current year by using the standard C library functions time() and
localtime(). time() reads the clock and returns a value of type time_t that is the
number of seconds since the beginning of year 1970. To find the year from a time_t

value, use localtime() to create a struct tm broken-down data structure. This
contains an int field called tm_year that sounds like it ought to be the year (like
2018), but it actually contains the year minus 1900. To use these functions in C++,
you would #include the header file ctime. (This is the C++ version of the C header
file time.h and is also included by tools.hpp.)

1This is the style we will use in the course.

http://zoo.cs.yale.edu/classes/cs427/2018f/resources/ExploringCpp/Chapter_01.pdf

Handout #2—September 3, 2018 3

6. Use the sample Makefile from lecture 2, modified if necessary.

7. Submit this assignment following the submission instructions from lecture 2.

4 Grading Rubric

Your assignment will be graded according to the scale given in Figure 1 (see below).

Pts. Item

1. 1 All source code is contained in the single file main.cpp.

2. 1 The source code is an ascii or utf-8 text file (not a .doc file).

3. 1 Code is neatly indented according to the style for this course.

4. 2 main.cpp contains required authorship information.

5. 1 main.cpp #includes the tools header file.

6. 1 main() calls banner() and bye().

7. 1 Each function is preceded by a comment that describes briefly what it
does.

8. 1 Program uses C++ I/O operators << and >> with standand streams cout
and cin.

9. 1 Program uses good() to check for input errors and takes appropriate
action in case of error.

10. 2 Program correctly computes the current year using time() and
localtime() functions.

11. 1 A well-formed Makefile or makefile is submitted that specifies compiler
options -O1 -g -Wall -std=c++17.

12. 1 Running make results in an executable file aboutme and generates no
errors or warnings.

13. 4 A file named aboutme.out contains the output from at least two test runs
of the program, one with correct input and one where a non-number was
entered instead of a valid year. The inputs typed for each test run should
also be included so the test output can be replicated.

14. 2 All required files are submitted on Canvas as described in lecture 2.

20 Total points.

Figure 1: Grading rubric.

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/ln02.pdf
http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/ln02.pdf
http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/ln02.pdf

	Assignment Goals
	Problem
	Programming Notes
	Grading Rubric

