
Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 2
August 31, 2018

CPSC 427, Lecture 2, August 31, 2018 1/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Task List

C++ Overview
C++ Language Design Goals
Comparison of C and C++

Building a Project
C/C++ Compilation Model
Project management
A sample project

Integrated Development Environments

Submission Instructions

CPSC 427, Lecture 2, August 31, 2018 2/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Tasks for this week

I Log in to the Zoo. You may see a CPSC 427 subdirectory
already created for you.

I Read Chapters 1–3 of Exploring C++. (36 pages in all.)

I Do problem set 1.

CPSC 427, Lecture 2, August 31, 2018 3/42

https://zoo.cs.yale.edu/classes/cs427/2018f/resources/ExploringCpp/ExploringCpp.pdf

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C++ Overview

CPSC 427, Lecture 2, August 31, 2018 4/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C++ Language Design Goals

Why did C need a ++?
Chapter 2 of Exploring C++

1. C was designed and constructed a long time ago (1971) as a
language for writing Unix.

2. The importance of data modeling was poorly understood at
that time.

3. Data types were real, integer, character, and array, of various
sizes and precisions.

4. It was important for C to be powerful and flexible but not to
have clean semantics.

5. Nobody talked much about portability and code re-use at that
time.

Today, we demand much more from a language.

CPSC 427, Lecture 2, August 31, 2018 5/42

https://zoo.cs.yale.edu/classes/cs427/2018f/resources/ExploringCpp/Chapter_02.pdf

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C++ Language Design Goals

C++ was Designed for Modeling

Design goals for C++ (Bjarne Stroustrup)

1. Provide classes (replacing structs) as a means to model data.

2. Let a class encapsulate data, so that its implementation is
hidden from a client program.

3. Permit a C++ program to link to libraries from other
languages, especially FORTRAN.

4. Produce executable code that is as fast as C, unless run-time
binding is necessary.

5. Be fully compatible with C, so that C programs could be
compiled under a C++ compiler and still work properly.

CPSC 427, Lecture 2, August 31, 2018 6/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C++ Language Design Goals

General properties of C++

I Widely used in the real world.

I Close to the machine and capable of producing efficient code.

I Gives a programmer fine control over the use of resources.

I Supports the object-oriented programming paradigm.

I Supports modularity and component isolation.

I Supports correctness through privacy, modularity, and use of
exceptions.

I Supports reusabale code through derivation and templates.

CPSC 427, Lecture 2, August 31, 2018 7/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Comparison of C and C++

C++ Extends C

I C++ grew out of C.

I Goals were to improve support for modularity, portability, and
code reusability.

I Most C programs will compile and run under C++.

I C++ replaces several problematic C constructs with safer
versions.

I Although most old C constructs will still work in C++, several
should not be used in new code where better alternatives exist.

Example: Use Boolean constants true and false instead of 1
and 0.

CPSC 427, Lecture 2, August 31, 2018 8/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Comparison of C and C++

Some Extensions in C++

I One-line comments //.

I Executable declarations.

I Type bool.

I Enumeration constants are no longer synonyms for integers.

I Reference types.

I Definable type conversions and operator extensions.

I Functions with multiple methods.

I Classes with private parts; class derivation.

I Class templates.

I An exception handler.

CPSC 427, Lecture 2, August 31, 2018 9/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Building a Project

CPSC 427, Lecture 2, August 31, 2018 10/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Modules

A compilation module is a collection of header files (.h or .hpp)
and an implementation file (.c or .cpp) that can be processed
by the C or C++ compiler to produce an object file (.o) file.

A project is a collection of compilation modules that can be
processed by the linker to produce a runnable piece of code called
an application (or program or executable or command).

Some modules are part of the project. Others come from libraries
(.a or .so files) that contain object code for modules written by
others and provided by the system for your use.

Whatever the origin of the modules, they must be joined together
during final assembly to produce the runnable application. This
step of the process is called linking.

CPSC 427, Lecture 2, August 31, 2018 11/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Separate compilation model

Unlike some languages, C/C++ permits independent compilation of
modules. In the traditional separate compilation model, each
module is compiled separately to produce a corresponding object
file. Then the object files and necessary libraries are linked together
to produce the executable.

The C/C++ programmer must clearly distinguish between
compilation and linking, especially when interpreting error
comments from the build process.

CPSC 427, Lecture 2, August 31, 2018 12/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

The build process

To summarize, the process of building an executable file consists of
two phases:

1. Each module in the project is compiled to produce
corresponding object files.

2. All object files in the project are linked together with
necessary libraries to produce the executable file.

Because the executable must be rebuilt every time one of the
source files is changed, manually going through the build process
can be tedious and error-prone.

CPSC 427, Lecture 2, August 31, 2018 13/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Automating the build process

Two common ways to automate the build process:

1. Use the make command. make reads a special file (Makefile
or makefile) which contains a description of the necessary
steps to build the application. It’s also smart about not
recompiling modules that have not changed since the last
build.

2. Use an Integrated development environments (IDE) such as
Xcode on the Mac or Eclipse on linux machines. The IDE
keeps track of which modules belong to the project so that
they can be rebuilt when needed.

CPSC 427, Lecture 2, August 31, 2018 14/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Local build requirement

In this course, you’re free to use whatever build tools you wish.
However, you must submit a correct makefile as part of your code
so that the grader can simply type make in order to produce an
executable that will run on the Zoo.

CPSC 427, Lecture 2, August 31, 2018 15/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

What comprises a module?

A module consists of one or more header files and at most one
implementation file.

Header files provide the context to the compiler for understanding
the code in the implementation file. The #include directive
names a header file that the compiler should process when
compiling this module.

Header files for system libraries are often found in the
/usr/include directory, but they can be put anywhere as long as
the compiler is told where to look for them.

Header files for the current module are generally located in the
same directory as the implementation file being compiled.

CPSC 427, Lecture 2, August 31, 2018 16/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Header files
Header files contain class, data, function, and other declarations
that are needed by the client of the module. They need to be
included by every module that uses those declarations. Header files
must not contain executable code. Doing so can lead to obscure
multiply-defined errors at link time.

There is no uniform naming convention for header files. In C,
people generally use the .h file name extension. For C++, some
people continue to use .h. This often works okay, but it can lead
to problems with projects that mix modules written in C with those
written in C++.

An unambiguous convention is to restrict .h to C header files and
to use .hpp for C++ header files. We will use that convention in
this course.

CPSC 427, Lecture 2, August 31, 2018 17/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

What’s in an implementation file?

Implementation (.cpp) files contain definitions of functions and
constants that comprise the actual runnable code.

Each compiled definition must appear in exactly one object file. If
it appears in more than one, the linker will generate a
multiply-defined error.

For this reason, definitions are never put in header files.1

1Template classes are an exception to this rule, but for non-obvious reasons
deriving from how the compiler handles templates.

CPSC 427, Lecture 2, August 31, 2018 18/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Compiling in linux

The Zoo machines have two different C++ compilers installed: g++

and clang++. Both are good compilers.

g++ is the venerable Gnu C++ compiler. It is fast and generally
very good.

clang++ is a newer, more modular, compiler. It is slower to run
than g++ but sometimes may give better object code. It also gives
different error messages which sometimes are clearer than those
from g++ (and sometime they are less clear).

You may find both compilers useful in developing your code.
However, the final result must run using g++, and your makefile
must be written to ensure that g++ will be used.

CPSC 427, Lecture 2, August 31, 2018 19/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Invoking the compiler

g++ and clang++ are commands used to invoke the corresponding
compilers. However, depending on the command line switches
given, they can be instructed to compiler and/or link several
modules with one invocation.

For example,
g++ -o mycommand mod1.cpp mod2.cpp mod3.cpp

will compile all three .cpp files and then link the results togeter to
produce an executable file mycommand. On the other hand, when
used with the -c switch,
g++ -c -o mod1.o mod1.cpp

compiles the one module mod1.cpp to produce the single object
file mod1.o.

CPSC 427, Lecture 2, August 31, 2018 20/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

Linking

When used without the -c switch, g++ calls the linker ld to build
an executable.

I If all command line arguments are object files, g++ just does
the linking.

I If one or more .cpp files appear on the command line, g++
first compiles them and then links the resulting object files
together with any .o files given on the command line. In this
case, g++ combines compilation and linking, and it does not
write any new object files.

In both cases, the linker completes the linking task by searching
libraries for any missing (unresolved) functions and variables and
linking them into the final output.

CPSC 427, Lecture 2, August 31, 2018 21/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

System libraries

System libraries are often found in directories /lib, /lib64,
/usr/lib, or /usr/lib64, but they can be placed anywhere as
long as the linker is told where to find them.

The linker knows where to find the standard system libraries, and it
searches the basic libraries automatically. Many other libraries are
not searched unless specifically requested by the -L and -l linker
flags.

CPSC 427, Lecture 2, August 31, 2018 22/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

C/C++ Compilation Model

One-line compilation

Often all that is required to compile your code is the single
command

g++ -o myapp -O1 -g -Wall -std=c++17 *.cpp

The switches have the following meanings:

I -o name the output file;

I -O1 do first-level optimization (which improves error
detection);

I -g add symbols for use by the debugger;

I -Wall gives all reasonable warnings;

I -std=c++17 tells the compiler to expect code in the C++17
language dialect.

CPSC 427, Lecture 2, August 31, 2018 23/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Project management

The job of the project manager

As we’ve seen, a project consists of many different files. Keeping
track of them and remembering which files and switches to put on
the command line can be a major chore.

Project maintenance tools such as make and Integrated
Development Environments (IDEs) are used to aid in this task.

CPSC 427, Lecture 2, August 31, 2018 24/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Project management

Command line development tools

At the very least, you should become familiar with the basic tools
for maintaining and building projects:

I A text editor such as emacs or vi.

I The compiler suite g++.

I The project manager make.

clang++ is a newer alternative to g++. There are indications that
it produces slightly better error messages and slightly better code
than g++, but both compilers are very good and are suitable for
use in this course. (The MacIntosh Xcode development system
now defaults to clang++.)

CPSC 427, Lecture 2, August 31, 2018 25/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Parts of a simple project

I Header file: tools.hpp

I Implementation files: main.cpp, tools.cpp

I Object files: main.o, tools.o

I Executable: myapp

Object files are built from implementation files and header files.

The executable is built from object files.

The Makefile describes how.

CPSC 427, Lecture 2, August 31, 2018 26/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Dependencies

Whenever a source file is changed, the object files and executables
that are directly or indirectly produced from it become out of date
and must be rebuilt. Those files are called dependencies of the
source file.

make uses dependency information stored in Makefile to avoid
rebuilding files that have not changed since the last build. It only
recompiles and/or relinks those files that are older than a file that
they depend on.

make uses file modification dates for this purpose, so if those dates
are off, make might fail to rebuild a file that is actually out of date.

CPSC 427, Lecture 2, August 31, 2018 27/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

A sample Makefile

#---

Macro definitions

CXXFLAGS = -O1 -g -Wall -std=c++17

OBJ = main.o tools.o

TARGET = myapp

#---

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

#---

Dependencies

main.o: main.cpp tools.hpp

tools.o: tools.cpp tools.hpp

CPSC 427, Lecture 2, August 31, 2018 28/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Parts of a Makefile

A Makefile has three parts:

1. Macro definitions.

2. Rules.

3. Dependencies.

Syntax peculiarities:

I Lines beginning with # are comments.

I Indented lines must start with a tab character.

CPSC 427, Lecture 2, August 31, 2018 29/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Macros

CXXFLAGS = -O1 -g -Wall -std=c++17

OBJ = main.o tools.o

TARGET = myapp

Macros are named strings.

I CXXFLAGS is added to the g++ command line in implicit
rules. Here we want level-1 optimization, symbols for the
debugger, all warnings, and dialect c++17.

I OBJ lists the object files for our application.

I TARGET lists the final product (command).

CPSC 427, Lecture 2, August 31, 2018 30/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

Rules tell how to build product files.

1. To build all, first build everything listed in TARGET.

2. To build TARGET, first build the .o files in OBJ. Then call the
linker to create TARGET from the files in OBJ.

3. To build clean, generated files, delete everything in OBJ and
TARGET.

CPSC 427, Lecture 2, August 31, 2018 31/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Rules

all: $(TARGET)

$(TARGET): $(OBJ)

$(CXX) -o $@ $(OBJ)

clean:

rm -f $(OBJ) $(TARGET)

Notes:

I CXX is predefined to be the system default C++ compiler.

I $@ is a special macro that refers the target of the current rule
(myapp in the above example).

I $(name) refers to the definition of macro name.

CPSC 427, Lecture 2, August 31, 2018 32/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Dependencies

main.o: main.cpp tools.hpp

tools.o: tools.cpp tools.hpp

Dependencies are a kind of degenerate rule.

I To build main.o, first “build” main.cpp and tools.hpp.

I To build tools.o, first “build” tools.cpp and tools.hpp.

But those dependencies are source files, so there is nothing to
build. And where is the rule to build main.o?

What make does is compare the file modification dates on the
target and on the dependencies in order to know if the target
needs to be rebuilt.

CPSC 427, Lecture 2, August 31, 2018 33/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

A sample project

Implicit rules

To build a target such as main.o for which there is no explicit rule,
make uses an implicit rule that knows how to build any .o file
from the corresponding .cpp file. In this case, the implicit rule
invokes the $(CXX) compiler to produce output main.o. The
compiler is called with the switches listed in $(CXXFLAGS).

CPSC 427, Lecture 2, August 31, 2018 34/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Integrated Development Environments

CPSC 427, Lecture 2, August 31, 2018 35/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Graphical development tools: IDEs

Integrated Development Environments provide graphical tools to
aid the programmer in many common tasks:

I Manage source files comprising a project;

I Display syntactic structure while editing;

I Search/replace over multiple files;

I Easy refactoring;

I Identifier completion;

I Display compiler error output in more readable form;

I Simplify edit-compile-run development cycle;

CPSC 427, Lecture 2, August 31, 2018 36/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Recommended IDE’s

Eclipse/CDT is a powerful, well-supported IDE that runs on many
different platforms. Xcode is an Apple-proprietary IDE that only
runs on Macs. Mac users may prefer it for its greater stability and
even more features. I recommend either of these for serious C++
code development.

Geany is a lightweight IDE. It starts up much faster and is much
more transparent in what it does. It should be more than adequate
for this course.

Both Eclipse and Geany are installed on the Zoo, ready for your
use.

The early part of this course can be perfectly well done in Emacs,
so you don’t have to learn Eclipse or Geany in order to get started.

CPSC 427, Lecture 2, August 31, 2018 37/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Integrated Development Environment (e.g., Eclipse)

Advantages

I Supports notion of project — all files needed for an
application.

I Provides graphical interface to all aspects of code
development.

I Automatically creates makefile.

I Builds project with a mouse click or keyboard shortcut.

I Analyzes code as it is being written. Provides helpful
feedback.

I Allows easy navigation among project components.

I Error comments are linked back to source code.

CPSC 427, Lecture 2, August 31, 2018 38/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Integrated Development Environment (e.g., Eclipse)

Disadvantages

I Complicated to learn how to use — big learning curve.

I “Simple” things can become complicated for the non-expert
(e.g., providing compiler flags) or making the font larger.

I Metadata can become inconsistent and difficult to repair.

CPSC 427, Lecture 2, August 31, 2018 39/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Integrated Development Environment

If you use an IDE, before submitting your assignment, you should:

1. Copy your source code and test data files from the IDE to a
separate submit directory on the Zoo.

2. Create a Makefile to build your project.

3. Test that everything works. Type make to make sure the
project builds. Then run the resulting executable on your test
suite to make sure it still does what you expect.

CPSC 427, Lecture 2, August 31, 2018 40/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Submission Instructions

CPSC 427, Lecture 2, August 31, 2018 41/42

Outline Task List C++ Overview Building a Project Integrated Development Environments Submission Instructions

Submitting your assignments

1. Create a submission directory in your Zoo account named
ps1-netid123, where you replace “ps1” with the current
assignment number and “netid123” with your own net id.

2. Copy into it all the files you intend to submit.

3. Type make in that directory to make sure all needed files are
present and your program builds and runs correctly.

4. Create required output files from your test runs.

5. Create a notes file that describes the submitted files.

6. Go up a level and create a gzipped tar file
ps1-netid123.tar.gz using the command
tar -czvf ps1-netid123.tar.gz ps1-netid123.

7. Submit the file ps1-netid123.tar.gz using Canvas.

CPSC 427, Lecture 2, August 31, 2018 42/42

	Task List
	C++ Overview
	C++ Language Design Goals
	Comparison of C and C++

	Building a Project
	C/C++ Compilation Model
	Project management
	A sample project

	Integrated Development Environments
	Submission Instructions

