
Outline C++ I/O End of File and I/O Errors

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 4
September 10, 2018

CPSC 427, Lecture 4, September 10, 2018 1/26

Outline C++ I/O End of File and I/O Errors

C++ I/O

End of File and I/O Errors

CPSC 427, Lecture 4, September 10, 2018 2/26

Outline C++ I/O End of File and I/O Errors

C++ I/O

CPSC 427, Lecture 4, September 10, 2018 3/26

Outline C++ I/O End of File and I/O Errors

Streams

C++ I/O is done through streams.

Four standard streams are predefined:

I cin is the standard input stream.

I cout is the standard output stream.

I cerr is the standard output stream for errors.

I clog is the standard output stream for logging.

Data is read from or written to a stream using the input and
output operators:

>> (for input). Example: cin >> x >> y;

<< (for output). Example: cout << "x=" << x;

CPSC 427, Lecture 4, September 10, 2018 4/26

Outline C++ I/O End of File and I/O Errors

Opening and closing streams

You can use streams to read and write files.

Some ways of opening a stream.

I ifstream fin("myfile.in"); opens stream fin for
reading. This implicitly invokes the constructor ifstream(
"myfile.in").

I ifstream fin; creates an input stream not associated with
a file. fin.open("myfile.in"); attaches it to a file.

Can also specify open modes.

To test if fin failed to open correctly, write if (!fin) {...}.

To close, use fin.close();.

CPSC 427, Lecture 4, September 10, 2018 5/26

Outline C++ I/O End of File and I/O Errors

Reading data

Simple forms. Assume fin is an open input stream.

I fin >> x >> y >> z; reads three fields from fin into x,
y, and z.

I The kind of input conversion depends on the types of the
variables.

I No need for format or &.

I Standard input is called cin.

I Can read a line into buffer with fin.get(buf, buflen);.
This function stops before the newline is read. To continue,
one must move past the newline with a simple fin.get(ch);

or fin.ignore();.

CPSC 427, Lecture 4, September 10, 2018 6/26

Outline C++ I/O End of File and I/O Errors

Writing data

Simple forms. Assume fout is an open output stream.

I fout << x << y << z; writes x, y, and z into fout.

I The kind of output conversion depends on the types of the
variables or expressions..

I Standard output is called cout. Other predefined output
streams are cerr and clog. They are usually initialized to
standard output but can be redirected.

I Warning: The eclipse debug window does not obey the proper
synchronization rules when displaying cout and cerr. Rather,
the output lines are interleaved arbitrarily. In particular, a line
written to cerr after a line written to cout can appear
before in the output listing. This won’t happen with a Linux
terminal window.

CPSC 427, Lecture 4, September 10, 2018 7/26

Outline C++ I/O End of File and I/O Errors

Manipulators

Manipulators are objects that can be arguments of >> or << but do
not necessarily produce data.

Example: cout << hex << x << y << dec << z << endl;

I Prints x and y in hex and z in decimal.

I After printing z, a newline is printed and the output stream is
flushed.

Manipulators are used in place of C formats to control input and
output formatting and conversions.

CPSC 427, Lecture 4, September 10, 2018 8/26

Outline C++ I/O End of File and I/O Errors

Implementation of Manipulators

Manipulators are recognized by having a special function type, e.g,
std::ios base& hex(std::ios base& str);.

The operators >> and << have been predefined to recognize
manipulators by their type and to take appropriate action when
they are encountered.

CPSC 427, Lecture 4, September 10, 2018 9/26

Outline C++ I/O End of File and I/O Errors

Print methods in new classes

Each new class should have a print() function that writes out
the object in human-readable form.

print() takes a stream reference as an argument that specifies
which stream to write to.

The prototype for such a function should be:
ostream& print(ostream& out) const;

If sq is an object of the new class, we can print sq by writing
sq.print(out);

Note that const prevents print() from modifying the object that
it is printing.

CPSC 427, Lecture 4, September 10, 2018 10/26

Outline C++ I/O End of File and I/O Errors

Extending the I/O operators

While sq.print() allows us to print sq, we’d rather do it in the
familiar way

out << sq;.

Fortunately, C++ allows one to extend the meaning of << in this
way. Here’s how.

inline

ostream& operator<<(ostream& out, const Square& sq) {

return sq.print(out);

}

Since this function is inline, it should go in the header file for class
Square.

CPSC 427, Lecture 4, September 10, 2018 11/26

Outline C++ I/O End of File and I/O Errors

Remarks on operator extensions

I Every definable operator has an associated function.
The function for << is operator<<().

I Extending << is simply a matter of defining the corresponding
method for a new combination of parameters.

I In this case, we want to allow out << sq, where out has
type ostream& and sq has type const Square&.

I The use of reference parameters prevents copying.

I The const is a promise that operator<< will not change sq.

CPSC 427, Lecture 4, September 10, 2018 12/26

Outline C++ I/O End of File and I/O Errors

Why << returns a stream reference

Both print() and operator<<() return a stream reference.

This allows compound constructs such as
out << "The square is: " << sq << endl;

By left associativity of <<, this is the same as
((out << "The square is: ") << sq) << endl;

CPSC 427, Lecture 4, September 10, 2018 13/26

Outline C++ I/O End of File and I/O Errors

Must it be inline?

If one wants operator<<() to be an ordinary function, the
following changes are needed:

1. Declare the operator in header file Square.hpp:

ostream& operator<<(ostream& out, const Square& sq);

2. Define the operator in code file Square.cpp:

ostream& operator<<(ostream& out, const Square& sq) {

return sq.print(out);

}

CPSC 427, Lecture 4, September 10, 2018 14/26

Outline C++ I/O End of File and I/O Errors

End of File and I/O Errors

CPSC 427, Lecture 4, September 10, 2018 15/26

Outline C++ I/O End of File and I/O Errors

Status bits

I/O functions set status flags after each I/O operation.

badbit means there was a read or write error on the file I/O.

failbit means the data was not appropriate to the field, e.g.,
trying to read a non-numeric character into a
numeric variable.

eofbit means that the end of file has been reached.

goodbit means that the above three bits are all off.

The whole state can be read with one call to rdstate().

CPSC 427, Lecture 4, September 10, 2018 16/26

Outline C++ I/O End of File and I/O Errors

Status functions

Functions are also provided for testing useful combinations of
status bits.

I good() returns true if the good bit is set.

I bad() returns true if the bad bit is set.

This is not the same as !good().

I fail() returns true if the bad bit or the fail bit is set.

I eof() returns true if the eof bit is set.

As in C, correct end of file and error checking require paying close
attention to detail of exactly when these state bits are turned on.
To continue after a bit has been set, must call clear() to clear it.

CPSC 427, Lecture 4, September 10, 2018 17/26

Outline C++ I/O End of File and I/O Errors

What eof means

Detecting and properly handling end of file is one of the most
confusing things in C++.

The eof flag may or may not be on after the last byte of the file
has been read and returned to the user.

The eof flag is turned on when the stream attempts to read
beyond the end of the file.

To understand eof requires a thorough understanding of how
stream input works.

CPSC 427, Lecture 4, September 10, 2018 18/26

Outline C++ I/O End of File and I/O Errors

When eof is turned on

A stream is a sequence of bytes. >> reads bytes until it has a
complete representation of the object that it is trying to read.

Whether eof is turned on depends on whether or not the current
input operation can complete based on the bytes read so far,
without looking ahead at the following byte.

I If it needs the lookahead to detect completion and the bytes
representing the data object go all the way to the end of the
file, then it will try to read beyond the end of the file and will
turn on the eof bit.

I If it doesn’t need the lookahead, then it will stop reading, and
the eof flag will remain off.

CPSC 427, Lecture 4, September 10, 2018 19/26

Outline C++ I/O End of File and I/O Errors

Reading an int

Consider what cin >> x does when reading the int x.

1. It first skips whitespace looking for the start of the number in
the stream. It reads bytes one at a time until either there are
no more left to read or a non-whitespace byte is read. If the
first happens, no data is read into x, and both the fail and
the eof flags are turned on (and the good flag is turned off).

2. If step 1 ended by finding a non-whitespace byte, then the
stream checks if the character just read can begin an integer.
The ones that can are +, -, 0, 1, ..., 9. If it is not one
of these, the fail flag is set, the eof flag remains off, and
nothing is stored into x.

CPSC 427, Lecture 4, September 10, 2018 20/26

Outline C++ I/O End of File and I/O Errors

Reading an int (cont.)

3. If an allowable number-starting character is found, then
reading continues character by character until a character is
read that can not be a part of the number currently being
read, or the end of file is encountered so no more characters
can be read.

Reading then stops. If a stopping character was read, it is put
back into the input buffer and the stream pretends that it was
not read. If reading stopped because of an attempt to read
past the end of the file, the eof flag is turned on.

In either case, the characters read so far are converted to an
int, stored into x, and the fail flag remains off. The eof

flag is on iff reading was stopped by attempting to read past
the end of the file.

CPSC 427, Lecture 4, September 10, 2018 21/26

Outline C++ I/O End of File and I/O Errors

Examples
The following examples show the remaining bytes in the file, where
 represents any whitespace character such as space or newline.

1. File contents: 123

An attempt to read past the end of the file is made since
otherwise one can’t know that the number is 123 is complete.
good and fail are off and eof is on.

2. File contents: 123

eof will be off and the next byte to be read is the one
following the 3 that stopped the reading. good is on and
fail and eof are off.

3. File contents:

No number is present. Step 1 reads and discards the
whitespace and attempts to read beyond the end of file. good

is off and fail and eof are on.

CPSC 427, Lecture 4, September 10, 2018 22/26

Outline C++ I/O End of File and I/O Errors

Common file-reading mistakes

We now talk about the practical issue of how to write your code to
correctly handle errors and end of file.

Two programming errors are common when reading data from a
file:

I Failing to read the last number.

I Reading the last number twice.

CPSC 427, Lecture 4, September 10, 2018 23/26

Outline C++ I/O End of File and I/O Errors

Failing to read the last number

good is not always true after a successful read.

If the last number is not followed by whitespace, then after it is
successfully read, eof is true and good is false. If one incorrectly
assumes this means no data was read, the last number will not be
processed.

Here’s a naive program that illustrates this problem:
do {

in >> x;

if (!in.good()) break;

cout << " " << x;

}

while (!in.eof());

cout << endl;

On input file containing 1 2 3, it will print 1 2.

CPSC 427, Lecture 4, September 10, 2018 24/26

Outline C++ I/O End of File and I/O Errors

Reading the last number twice

eof is not always true after the last number is read.

If the last number is followed by whitespace, then after it is read,
eof will still be false. If one incorrectly assumes it is okay to keep
reading as long as eof is false, the last read attempt will fail and
the input variable won’t change.

Here’s a naive program that illustrates this problem:

while (!in.eof()) {

in >> x;

cout << " " << x;

}

cout << endl;

On input file containing 1 2 3 , it will print 1 2 3 3.

CPSC 427, Lecture 4, September 10, 2018 25/26

Outline C++ I/O End of File and I/O Errors

How to read all numbers in a file

Here’s a correct way to correctly read and process all of the
numbers. Instead of printing them out, it adds them up in the
register s.

int s=0;

int x;

do {

in >> x;

if (!in.fail()) s+=x; // got good data

} while (in.good());

if (!in.eof()) throw Fatal("I/O error or bad data");

CPSC 427, Lecture 4, September 10, 2018 26/26

	C++ I/O
	End of File and I/O Errors

