
Outline Functions and Methods Derivation Objects

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 5
September 12, 2018

CPSC 427, Lecture 5, September 12, 2018 1/27

Outline Functions and Methods Derivation Objects

Functions and Methods
Parameters
Choosing Parameter Types
The Implicit Argument

Derivation

Objects of Class Types

CPSC 427, Lecture 5, September 12, 2018 2/27

Outline Functions and Methods Derivation Objects

Functions and Methods

CPSC 427, Lecture 5, September 12, 2018 3/27

Outline Functions and Methods Derivation Objects

Parameters

Call by value

Like C, C++ passes explicit parameters by value.

void f(int y) { ... y=4; ... };

// Calling context

int x=3;

f(x);

I x and y are independent variables.

I y is created when f is called and destroyed when it returns.

I At the call, the value of x (=3) is used to initialize y.

I The assignment y=4; inside of f has no effect on x.

CPSC 427, Lecture 5, September 12, 2018 4/27

Outline Functions and Methods Derivation Objects

Parameters

Call by pointer
Like C, pointer values (which I call reference values) are the
things that can be stored in pointer variables.
Also like C, references values can be passed as arguments to
functions with corresponding pointer parameters.

void g(int* p) { ... (*p)=4; ... };

// Calling context

int x=3;

g(&x);

I p is created when g is called and destroyed when it returns.

I At the call, the value of &x, a reference value, is used to
initialize p.

I The assignment (*p)=4; inside of g changes the value of x.

CPSC 427, Lecture 5, September 12, 2018 5/27

Outline Functions and Methods Derivation Objects

Parameters

Call by reference

C++ has a new kind of parameter called a reference parameter.

void g(int& p) { ... p=4; ... };

// Calling context

int x=3;

g(x);

I This does same thing as previous example; namely, the
assignment p=4 changes the value of x.

I Within the body of g, p is a synonym for x.

I For example, &p and &x are identical reference values.

CPSC 427, Lecture 5, September 12, 2018 6/27

Outline Functions and Methods Derivation Objects

Parameters

I/O uses reference parameters

I The first argument to << has type ostream&.

I cout << x << y; is same as (cout << x) << y;.

I << returns a reference to its first argument, so this is also the
same as

cout << x;

cout << y;

CPSC 427, Lecture 5, September 12, 2018 7/27

Outline Functions and Methods Derivation Objects

Choosing Parameter Types

How should one choose the parameter type?

Parameters are used for two main purposes:

I To send data to a function.

I To receive data from a function.

CPSC 427, Lecture 5, September 12, 2018 8/27

Outline Functions and Methods Derivation Objects

Choosing Parameter Types

Sending data to a function: call by value

For sending data to a function, call by value copies the data
whereas call by pointer or reference copies only an address.

I If the data object is large, call by value is expensive of both
time and space and should be avoided.

I If the data object is small (eg., an int or double), call by
value is cheaper since it avoids the indirection of a reference.

I Call by value protects the caller’s data from being
inadvertantly changed.

CPSC 427, Lecture 5, September 12, 2018 9/27

Outline Functions and Methods Derivation Objects

Choosing Parameter Types

Sending data to a function: call by reference or pointer

Call by reference or pointer allows the caller’s data to be changed.
Use const to protect the caller’s data from inadvertant change.

Ex: int f(const int& x) or int g(const int* xp).

Prefer call by reference to call by pointer for input parameters.

Ex: f(234) works but g(&234) does not.

Reason: 234 is not a variable and hence can not be the target of a
pointer.
(The reason f(234) does work is a bit subtle and will be
explained later.)

CPSC 427, Lecture 5, September 12, 2018 10/27

Outline Functions and Methods Derivation Objects

Choosing Parameter Types

Receiving data from a function

A parameter that is expected to be changed by the function is
called an output parameter. (This is distinct from the function
return value.)

Both call by reference and call by pointer work for output
parameters.

Call by reference is generally preferred since it avoids the need for
the caller to place an ampersand in front of the output variable.

Declaration: int f(int& x) or int g(int* xp).

Call: f(result) or g(&result).

CPSC 427, Lecture 5, September 12, 2018 11/27

Outline Functions and Methods Derivation Objects

The Implicit Argument

The implicit argument

Every call to a class member function has an implicit argument.
This is the object written before the dot in the function call.

class MyExample {

private:

int count; // data member

public:

void advance(int n) { count += n; }

...

};

// Calling context

MyExample ex;

ex.advance(3);

Increments ex.count by 3.

CPSC 427, Lecture 5, September 12, 2018 12/27

Outline Functions and Methods Derivation Objects

The Implicit Argument

this keyword

The implicit argument is passed by pointer.

It can be referenced directly from within a member function using
the special keyword this.

In the call ex.advance(3), the implicit argument is ex, and this

acts like a pointer variable of type MyExample* that has been
initialized to &ex.

Within the body of advance(), the variable name count and the
expresssion this->count are synonymous. Both refer to the
private data member count.

CPSC 427, Lecture 5, September 12, 2018 13/27

Outline Functions and Methods Derivation Objects

Derivation

CPSC 427, Lecture 5, September 12, 2018 14/27

Outline Functions and Methods Derivation Objects

Class relationships

Classes can relate to and collaborate with other classes in many
ways.

We first explore derivation, where one class modifies and extends
another.

CPSC 427, Lecture 5, September 12, 2018 15/27

Outline Functions and Methods Derivation Objects

What is derivation?
One class can be derived from another.

Syntax:
class Base {

public:

int x;

...

};

class Deriv : public Base {

int y;

...

};

Base is the base class; Deriv is the derived class.
Deriv inherits the members from Base.

CPSC 427, Lecture 5, September 12, 2018 16/27

Outline Functions and Methods Derivation Objects

Instances

A base class instance is contained in each derived class instance.

Similar to composition, except for inheritance.

Function members are also inherited.

Data and function members can be overridden in the derived class.

Derivation is a powerful tool for allowing variations to a design.

CPSC 427, Lecture 5, September 12, 2018 17/27

Outline Functions and Methods Derivation Objects

Some uses of derivation

Derivation has several uses.

I To allow a family of related classes to share common parts.

I To describe abstract interfaces à la Java.

I To allow generic methods with run-time dispatching.

I To provide a clean interface between existing, non-modifiable
code and added user code.

CPSC 427, Lecture 5, September 12, 2018 18/27

Outline Functions and Methods Derivation Objects

Example: Parallelogram

class Parallelogram {

protected: // allows access by children

double base; // length of base

double side; // length of side

double angle; // angle between base and side

public: // public API

Parallelogram() {} // null default constructor

Parallelogram(double b, double s, double a);

double area() const; // computes area

double perimeter() const; // computes perimeter

ostream& print(ostream& out) const;

};

CPSC 427, Lecture 5, September 12, 2018 19/27

Outline Functions and Methods Derivation Objects

Example: Rectangle

class Rectangle : public Parallelogram {

public:

Rectangle(double b, double s) {

base = b;

side = s;

angle = pi/2.0; // assumes pi is defined elsewhere

}

};

Derived class Rectangle inherits area(), perimeter(), and
print() functions from Parallelogram.

CPSC 427, Lecture 5, September 12, 2018 20/27

Outline Functions and Methods Derivation Objects

Example: Square
class Square : public Rectangle {

public:

Square(double b) : Rectangle(b, b) {} // uses ctor

bool inscribable(Square& s) const {

double diag = sqrt(2.0)*side; // this diagonal

return side <= s.side && diag >= s.side;

}

double area() const { return side*side; }

};

Derived class Square inherits the perimeter(), and print()

methods from Parallelogram (via Rectangle).

It overrides the method area().

It adds the method inscribable() that determines whether this
square can be inscribed inside of its argument square s.

CPSC 427, Lecture 5, September 12, 2018 21/27

Outline Functions and Methods Derivation Objects

Notes on Square

Features of Square.

I The ctor : Rectangle(b, b) allows parameters to be
supplied to the Rectangle constructor.

I The method inscribable() extends Rectangle, adding
new functionality.
It returns true if this square can be inscribed in square s.

I The function area overrides the less-efficient definition in
Parallelogram.

CPSC 427, Lecture 5, September 12, 2018 22/27

Outline Functions and Methods Derivation Objects

Objects of Class Types

CPSC 427, Lecture 5, September 12, 2018 23/27

Outline Functions and Methods Derivation Objects

Structure of an object

A simple object is like a struct in C.
It consists of a block of storage large enough to contain all of its
data members.

An object of a derived class contains an instance of the base class
followed by the data members of the derived class.

Example:
class Deriv : Base { ... };
Deriv myObj;

Then “inside” of myObj is a Base-instance!

CPSC 427, Lecture 5, September 12, 2018 24/27

Outline Functions and Methods Derivation Objects

Example object of a derived class

The declaration Base bObj creates a variable of type Base and
storage size large enough to contain all of Base’s data members
(plus perhaps some padding).

bObj: int x;

The declaration Deriv dObj creates a variable of type Deriv and
storage size large enough to contain all of Base’s data members
plus all of Deriv’s data members.

dObj: int x; int y;

The inner box denotes a Base-instance.

CPSC 427, Lecture 5, September 12, 2018 25/27

Outline Functions and Methods Derivation Objects

Referencing a composed object

Contrast the previous example to
class Deriv { Base bObj; ...};
Deriv dObj;

Here Deriv composes Base.

The variable x from the embedded Base object can be referenced
using bObj.x .

CPSC 427, Lecture 5, September 12, 2018 26/27

Outline Functions and Methods Derivation Objects

Referencing a base object
How do we reference the base object embedded in a derived class?

Example:
class Base { public: int x; int y; ...};
class Deriv : Base { int y; ...};
Deriv dObj;

I The data members of Base can be referenced directly by
name.
x refers to data member x in class Base.
y refers to data member y in class Deriv.
Base::y refers to data member y in class Base.

I this points to the whole object.
Its type is Deriv*.
It can be coerced to type Base*.

CPSC 427, Lecture 5, September 12, 2018 27/27

	Functions and Methods
	Parameters
	Choosing Parameter Types
	The Implicit Argument

	Derivation
	Objects of Class Types

