R —
Outline Construction/Destruction Reference Types
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 6
September 17, 2018

CPSC 427, Lecture 6, September 17, 2018 1/31
e

R —
Outline Construction/Destruction Reference Types
: :

Construction, Initialization, and Destruction

Reference Types

CPSC 427, Lecture 6, September 17, 2018 2/31
e

e
Outline Construction/Destruction Reference Types
: :

Construction, Initialization, and Destruction

CPSC 427, Lecture 6, September 17, 2018 3/31
e

Outline Construction/Destruction Reference Types
:

Initializing an object

Whenever a class object is created, one of its constructors is called.

This applies not only to the “outer” object but also to all of its
embedded objects.

If not specified otherwise, the default constructor is called, if
defined. This is the one that takes no arguments.
Example: MyClass mc; calls default constructor mc.

If you do not define any constructors, then the default constructor
is defined automatically to be the null constructor.

CPSC 427, Lecture 6, September 17, 2018 4/31

00

Outline Construction/Destruction Reference Types
: :

Which constructor gets used?

A class can have several constructor methods, differing from each
other in the number and types of arguments.

When an object is created, the constructor called is the one
matching the user-specified arguments.

For example, suppose the user declares two Parallelogram

objects:
Parallelogram tempShape;

Parallelogram yellowShape(5, 5, 30);

tempShape is initialized by calling the null constructor.
yellowShape is initialized by calling Parallelogram(5, 5, 30).

: :
CPSC 427, Lecture 6, September 17, 2018 5/31

00

Outline Construction/Destruction Reference Types
: :

Construction rules for a simple class

The rule for constructing an object of a simple class is:

1. Call the constructor/initializer for each data member, in
sequence.

2. Call the constructor for the class.

: :
CPSC 427, Lecture 6, September 17, 2018 6/31

e

Outline Construction/Destruction Reference Types
: :

Construction rules for a derived class

The rule for constructing an object of a derived class is:

1. Call the constructor for the base class (which recursively calls
the other constructors needed to completely initialize the base
class object.)

2. Call the constructor/initializer for each data member of the
derived class, in sequence.

3. Call the constructor for the derived class.

: :
CPSC 427, Lecture 6, September 17, 2018 7/31

e

Outline Construction/Destruction Reference Types
:

Destruction rules

When an object is deleted, the destructors are called in the
opposite order before the storage allocated to the object is released
back to the system.

The rule for an object of a derived class is:

1. Call the destructor for the dervied class.

2. Call the destructor for each data member of the derived class
in reverse sequence.

3. Call the destructor for the base class.

Rules for a simple class are the same except that step 3 is omitted.

:
CPSC 427, Lecture 6, September 17, 2018 8/31

00

Outline Construction/Destruction Reference Types
: :

Constructor ctors

Ctors (short for constructor/initializors) allow one to supply
parameters to implicitly-called constructors.

Example:

class Deriv : Base {
Deriv(int n) : Base(n) {};
// Calls Base constructor with argument n

};

: :
CPSC 427, Lecture 6, September 17, 2018 9/31

00

Outline Construction/Destruction Reference Types
: :

Initialization ctors
Ctors also can be used to initialze primitive (non-class) variables.

Example:

class Deriv {

int x;

const int y;

Deriv(int n) : x(n), y(n+1) {}; //Initializes x and y
};

Multiple ctors are separated by commas.

Ctors present must be in the same order as the construction takes
place — base class ctor first, then data member ctors in the same
order as their declarations in the class.

: :
CPSC 427, Lecture 6, September 17, 2018 10/31

Outline Construction/Destruction Reference Types

Initialization not same as assignment

Previous example using ctors is not the same as writing
Deriv(int n) { y=n+1; x=n; };
> The order of initialization differs.
» const variables can be initialized but not assgined to.
» Initialization uses the constructor (for class objects).

» Initialization from another instance of the same type uses the
copy constructor.

CPSC 427, Lecture 6, September 17, 2018 11/31

00

Outline Construction/Destruction Reference Types
: :

Special member functions

A class has six special member functions. These are special
because they are defined automatically if the programmer does not
redefine them. They are distinguished by their prototypes.

Name Prototype
Default constructor MyClassQ);
Destructor “MyClass();

Copy constructor MyClass(const MyClass& other);
Move constructor ~ MyClass(MyClass&& other);

Copy assignment MyClass& operator=(const T& other);
Move assignment MyClass& operator=(T&& other);

: :
CPSC 427, Lecture 6, September 17, 2018 12/31

Outline Construction/Destruction Reference Types
: :

Special function automatic definitions

Name Automatic Definition

Default constructor Null constructor does nothing;
Destructor Function that does nothing

Copy constructor Does a shallow copy from its argument
Move constructor (later)

Copy assignment Does a shallow copy from rhs to lhs
Move assignment (later)

Copy and assignment have the same default semantics but can be
redefined to behave differently.

: :
CPSC 427, Lecture 6, September 17, 2018 13/31

00

Outline Construction/Destruction Reference Types
: :

Deletion

Some of the automatic definitions are omitted if certain special
functions are defined by the user.

For example, if you define a constuctor with arguments, then the
default constructor is automatically deleted.

You can explicitly remove any automatically-created special
function by using =delete in place of a definition.

Example: To remove the copy constructor for MyClass, write
MyClass(const MyClass&) = delete;

: :
CPSC 427, Lecture 6, September 17, 2018 14/31

Outline Construction/Destruction Reference Types
:

Restoration of automatically deleted definition

If a default definition for a special function is automatically deleted,
it can be brought back using =default in place of a definition.

For example, if you define a constuctor with arguments, then the
default constructor is automatically deleted.

To bring it back, you can write MyClass() = default;.

:
CPSC 427, Lecture 6, September 17, 2018 15/31
e

Outline Construction/Destruction Reference Types
: :

Copy constructors

» A copy constructor is automatically defined for each new class
MyClass and has prototype MyClass(const MyClass&). It
initializes a newly created MyClass object by making a
shallow copy of its argument.

» Copy constructors are used for call-by-value parameters.

> Assignment uses operator=(), which by default copies the
data members but does not call the copy constructor.

> The results of the implicitly-defined assignment and copy

constructors are the same, but they can be redefined to be
different.

: :
CPSC 427, Lecture 6, September 17, 2018 16/31

Outline Construction/Destruction Reference Types
:

Move constructors

C++11 introduced a move constructor. Its purpose is to allow an
object to be safely moved from one variable to another while
avoiding the “double delete” problem.

We'll return to this interesting topic later, after we've looked more
closely at dynamic extensions.

:
CPSC 427, Lecture 6, September 17, 2018 17/31
e

e
Outline Construction/Destruction Reference Types
: :

Reference Types

CPSC 427, Lecture 6, September 17, 2018 18/31
e

Outline Construction /Destruction Reference Types
: :

Reference types

Recall: Given int x, two types are associated with x: an L-value
(the reference to x) and an R-value (the type of its values).

C++ exposes this distinction through reference types and
declarators.

A reference type is any type T followed by &, i.e., T&.

A reference type is the internal type of an L-value.

Example: Given int x, the name x is bound to an L-value of type
int&, whereas the values stored in x have type int

This generalizes to arbitrary types T: If an L-value stores values of
type T, then the type of the L-value is T&.

: :
CPSC 427, Lecture 6, September 17, 2018 19/31

Outline Construction/Destruction Reference Types
: :

Reference declarators

The syntax T& can be used to declare names, but its meaning is
not what one might expect.

int x = 3; // Ordinary int variable
int& y = x; // yis an alias for x
y = 4; // Now x ==

The declaration must include an initializer.

The meaning of int& y = x; is that y becomes a name for the
L-value x.

Since x is simply the name of an L-value, the effect is to make y
an alias for x.

For this to work, the L-value type (int&) of x must match the
type declarator (int&) for y, as above.

: :
CPSC 427, Lecture 6, September 17, 2018 20/31
e

Outline Construction/Destruction Reference Types
: :

Use of named references

Named references can be used just like any other variable.

One application is to give names to otherwise unnamed objects.

int axis[101]; // values along a graph axis
int& first = axis[0] ; // give name to first element
int& last = axis[100]; // give name to last element
first = -50;

last = 50;

// use p to scan through the array
int* p;
for (p=&first; p!=&last; p++) {...}

: :
CPSC 427, Lecture 6, September 17, 2018 21/31
e

Outline Construction/Destruction Reference Types
:

Reference parameters

References are mainly useful for function parameters and return
values.

When used to declare a function parameter, they provide
call-by-reference semantics.

int £(int& x){...}

Within the body of £, x is an alias for the actual parameter, which
must be the L-value of an int location.

:
CPSC 427, Lecture 6, September 17, 2018 22/31
e

Outline Construction/Destruction Reference Types
:

Reference return values

Functions can also return references.

int& g(bool flag, int& x, int& y) {
if (flag) return x;
return y,;

}

g(x<y, x, y) =x +y;

This code returns a reference to the smaller of x and y and then
sets that variable to their sum.

:
CPSC 427, Lecture 6, September 17, 2018 23/31

	Construction, Initialization, and Destruction
	Reference Types

