
Outline Reference Types (cont.)

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 7
September 19, 2018

CPSC 427, Lecture 7, September 19, 2018 1/17



Outline Reference Types (cont.)

Reference Types (cont.)

CPSC 427, Lecture 7, September 19, 2018 2/17



Outline Reference Types (cont.)

Reference Types (cont.)

CPSC 427, Lecture 7, September 19, 2018 3/17



Outline Reference Types (cont.)

Custom subscripting

Suppose you would like to use 1-based arrays instead of C++’s
0-based arrays.

We can define our own subscript function so that sub(a, k)

returns the L-value of array element a[k-1].

sub(a,k) can be used on either the left or right side of an
assignment statement, just like the built-in subscript operator.

int& sub(int a[], int k) { return a[k-1]; }

...

int mytab[20];

for (k=1; k<=20; k++)

sub(mytab, k) = k;

CPSC 427, Lecture 7, September 19, 2018 4/17



Outline Reference Types (cont.)

Constant references

Constant reference types allow the naming of pure R-values.
const double& pi = 3.1415926535897932384626433832795;

Actually, this is little different from
const double pi = 3.1415926535897932384626433832795;

In both cases, the pure R-value is placed in a read-only object, and
pi is bound to its L-value.

CPSC 427, Lecture 7, September 19, 2018 5/17



Outline Reference Types (cont.)

A review of definitions

I An object is a block of memory into which data can be stored
along with a type.

I The type of an object tells the storage size and interpretation
of its contents.

I The R-value of an object is the sequence of bytes stored in it.

I The L-value of an object is a unique label for the object. It is
often represented by a machine address.

I A reference is an L-value along with its type.

I An object might or might not have a name. If it does, the
name is bound to a reference.

CPSC 427, Lecture 7, September 19, 2018 6/17



Outline Reference Types (cont.)

LHS and RHS contexts

I The meaning of a name or reference depends on the context
in which it appears.

I The right hand side of an assignment statement is said to be
RHS context. A name appearing there evaluates to the
R-value of the object that it references.

I The left hand side of an assignment statement is said to be
LHS context. A name appearing there evaluates to the
L-value of the object that it references.

CPSC 427, Lecture 7, September 19, 2018 7/17



Outline Reference Types (cont.)

Example

int x = 3 creates an object on the stack of type int, stores the
number 3 in it, and gives it the name “x”.

Let 0x1234 be the address of the newly-created object x.

I The L-value of x is 0x1234;

I The R-value of x is 3;

I x itself names the reference (0x1234, int).

In the expression y = x+1, the name x appears in RHS context.
Its R-value, 3, is fetched from x and used by the + operator.
The name y appears in LHS context.
Its L-value is where the result of x+1 is stored.

CPSC 427, Lecture 7, September 19, 2018 8/17



Outline Reference Types (cont.)

Pointers

A pointer is a special kind of R-value that embeds a reference.

The prefix operator *, applied to a pointer, returns the reference
embedded in the pointer. This operation is called following the
pointer.

A pointer that embeds a reference of type T is said to have type T*.

If x is a reference of type T, then the prefix operator & can be
applied to x to produce a pointer to x.

The type of &x is T*. Thus, *&x is an alias for x.

CPSC 427, Lecture 7, September 19, 2018 9/17



Outline Reference Types (cont.)

Pointer objects

I A pointer object of type T* is an object that can store
pointers of type T* as its R-values.

I The star operator *p applied to a pointer object p first fetches
the R-value of p which is a pointer. It then follows that
pointer and returns its embedded reference.

I This returned reference can be used like any other object. For
example, if p has type int*, then (*p) = 17 stores 17 into
the reference returned by *p, which will have type int.

CPSC 427, Lecture 7, September 19, 2018 10/17



Outline Reference Types (cont.)

Examples Presented in Class

Several examples were presented in class on the blackboard.

Hand-drawn pictures used boxes to represent objects, hex numbers
to represent L-values, numbers inside boxes to represent primitive
R-values, and arrows starting inside one box and pointing to
another to represent pointers.

Anyone who missed class is encouraged to borrow class notes from
someone who attended.

CPSC 427, Lecture 7, September 19, 2018 11/17



Outline Reference Types (cont.)

Comparison of reference and pointer

I A reference (L-value) is the result of following a pointer.

I A pointer is only followed when explicitly requested
(by * or ->).

I A reference name is bound when it is created. Pointer objects
can be initialized at any time (unless declared to be const).

I Once a reference is bound to an object, it cannot be changed
to refer to another object. Pointer objects can be be assigned
a different pointer at any time (unless declared to be const).

I A reference is always associated with a fixed piece of storage.
By way of contrast, a pointer object can contain the special
value nullptr, which is a special pointer that can be
compared for equality but not be followed.

CPSC 427, Lecture 7, September 19, 2018 12/17



Outline Reference Types (cont.)

Concept summary

Concept Meaning

Object A block of memory and its contents.

L-value The machine address of an object.

R-value The value stored in an object.

Pointer An R-value consisting of a machine address.

Pointer object An object into which a pointer can be stored.

Reference A typed L-value.

Identifier A name which is bound to a reference.

CPSC 427, Lecture 7, September 19, 2018 13/17



Outline Reference Types (cont.)

Type summary

Let T be any type.

Concept Type Meaning

Object T L-value has type T&, R-value has type T.

L-value T& The object at its address has type T.

R-value T The type of the data value is T.

Pointer object T* L-value has type T*&, R-value has type T*.

L-value of ptr obj T*& The object at its address has type T*.

Pointer R-value T* The type of the data value is T*.

CPSC 427, Lecture 7, September 19, 2018 14/17



Outline Reference Types (cont.)

Declaration syntax

T x; Binds x to the L-value of a new object of type T.

T& x=y; Binds x to the L-value of y, which has type T&.

T* x = new T; Binds x to the L-value of a new pointer object x
of type T*, creates a dynamically-allocated object
of type T, and stores a pointer to it in x.

T* y; Binds y to a new uninitialized object of type T*.

CPSC 427, Lecture 7, September 19, 2018 15/17



Outline Reference Types (cont.)

Storing a list of objects in a data member

A common problem is to store a list of objects of some type T as a
data member li in a class MyClass.

Here are six ways it can be done:
1. T li[100]; li is composed in MyClass.
2. T* li[100]; li is composed in MyClass. Constructor does

loop to store new T in each array slot.
3. T* li; Constructor does li = new T[100];.
4. T** li; Constructor does li = new T*[100]; then

does loop to store new T in each array slot.
5. vector<T> li; Uses Standard vector class. T must be copi-

able.
6. vector<T*> li; Constructor does loop to store new T into each

vector slot.

CPSC 427, Lecture 7, September 19, 2018 16/17



Outline Reference Types (cont.)

How to access

Here’s how to acces element 3 in each case:

1. T li[100]; li[3].
2. T* li[100]; *li[3].
3. T* li; li[3].
4. T** li; *li[3].
5. vector<T> li; li[3].
6. vector<T*> li; *li[3].

CPSC 427, Lecture 7, September 19, 2018 17/17


	Reference Types (cont.)

