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Outline Reference Types (cont.)

Custom subscripting

Suppose you would like to use 1-based arrays instead of C++’s
0-based arrays.

We can define our own subscript function so that sub(a, k)

returns the L-value of array element a[k-1].

sub(a,k) can be used on either the left or right side of an
assignment statement, just like the built-in subscript operator.

int& sub(int a[], int k) { return a[k-1]; }

...

int mytab[20];

for (k=1; k<=20; k++)

sub(mytab, k) = k;
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Outline Reference Types (cont.)

Constant references

Constant reference types allow the naming of pure R-values.
const double& pi = 3.1415926535897932384626433832795;

Actually, this is little different from
const double pi = 3.1415926535897932384626433832795;

In both cases, the pure R-value is placed in a read-only object, and
pi is bound to its L-value.
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Outline Reference Types (cont.)

A review of definitions

I An object is a block of memory into which data can be stored
along with a type.

I The type of an object tells the storage size and interpretation
of its contents.

I The R-value of an object is the sequence of bytes stored in it.

I The L-value of an object is a unique label for the object. It is
often represented by a machine address.

I A reference is an L-value along with its type.

I An object might or might not have a name. If it does, the
name is bound to a reference.
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Outline Reference Types (cont.)

LHS and RHS contexts

I The meaning of a name or reference depends on the context
in which it appears.

I The right hand side of an assignment statement is said to be
RHS context. A name appearing there evaluates to the
R-value of the object that it references.

I The left hand side of an assignment statement is said to be
LHS context. A name appearing there evaluates to the
L-value of the object that it references.
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Outline Reference Types (cont.)

Example

int x = 3 creates an object on the stack of type int, stores the
number 3 in it, and gives it the name “x”.

Let 0x1234 be the address of the newly-created object x.

I The L-value of x is 0x1234;

I The R-value of x is 3;

I x itself names the reference (0x1234, int).

In the expression y = x+1, the name x appears in RHS context.
Its R-value, 3, is fetched from x and used by the + operator.
The name y appears in LHS context.
Its L-value is where the result of x+1 is stored.
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Outline Reference Types (cont.)

Pointers

A pointer is a special kind of R-value that embeds a reference.

The prefix operator *, applied to a pointer, returns the reference
embedded in the pointer. This operation is called following the
pointer.

A pointer that embeds a reference of type T is said to have type T*.

If x is a reference of type T, then the prefix operator & can be
applied to x to produce a pointer to x.

The type of &x is T*. Thus, *&x is an alias for x.
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Outline Reference Types (cont.)

Pointer objects

I A pointer object of type T* is an object that can store
pointers of type T* as its R-values.

I The star operator *p applied to a pointer object p first fetches
the R-value of p which is a pointer. It then follows that
pointer and returns its embedded reference.

I This returned reference can be used like any other object. For
example, if p has type int*, then (*p) = 17 stores 17 into
the reference returned by *p, which will have type int.
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Outline Reference Types (cont.)

Examples Presented in Class

Several examples were presented in class on the blackboard.

Hand-drawn pictures used boxes to represent objects, hex numbers
to represent L-values, numbers inside boxes to represent primitive
R-values, and arrows starting inside one box and pointing to
another to represent pointers.

Anyone who missed class is encouraged to borrow class notes from
someone who attended.
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Outline Reference Types (cont.)

Comparison of reference and pointer

I A reference (L-value) is the result of following a pointer.

I A pointer is only followed when explicitly requested
(by * or ->).

I A reference name is bound when it is created. Pointer objects
can be initialized at any time (unless declared to be const).

I Once a reference is bound to an object, it cannot be changed
to refer to another object. Pointer objects can be be assigned
a different pointer at any time (unless declared to be const).

I A reference is always associated with a fixed piece of storage.
By way of contrast, a pointer object can contain the special
value nullptr, which is a special pointer that can be
compared for equality but not be followed.
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Outline Reference Types (cont.)

Concept summary

Concept Meaning

Object A block of memory and its contents.

L-value The machine address of an object.

R-value The value stored in an object.

Pointer An R-value consisting of a machine address.

Pointer object An object into which a pointer can be stored.

Reference A typed L-value.

Identifier A name which is bound to a reference.
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Outline Reference Types (cont.)

Type summary

Let T be any type.

Concept Type Meaning

Object T L-value has type T&, R-value has type T.

L-value T& The object at its address has type T.

R-value T The type of the data value is T.

Pointer object T* L-value has type T*&, R-value has type T*.

L-value of ptr obj T*& The object at its address has type T*.

Pointer R-value T* The type of the data value is T*.
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Outline Reference Types (cont.)

Declaration syntax

T x; Binds x to the L-value of a new object of type T.

T& x=y; Binds x to the L-value of y, which has type T&.

T* x = new T; Binds x to the L-value of a new pointer object x
of type T*, creates a dynamically-allocated object
of type T, and stores a pointer to it in x.

T* y; Binds y to a new uninitialized object of type T*.
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Outline Reference Types (cont.)

Storing a list of objects in a data member

A common problem is to store a list of objects of some type T as a
data member li in a class MyClass.

Here are six ways it can be done:
1. T li[100]; li is composed in MyClass.
2. T* li[100]; li is composed in MyClass. Constructor does

loop to store new T in each array slot.
3. T* li; Constructor does li = new T[100];.
4. T** li; Constructor does li = new T*[100]; then

does loop to store new T in each array slot.
5. vector<T> li; Uses Standard vector class. T must be copi-

able.
6. vector<T*> li; Constructor does loop to store new T into each

vector slot.

CPSC 427, Lecture 7, September 19, 2018 16/17



Outline Reference Types (cont.)

How to access

Here’s how to acces element 3 in each case:

1. T li[100]; li[3].
2. T* li[100]; *li[3].
3. T* li; li[3].
4. T** li; *li[3].
5. vector<T> li; li[3].
6. vector<T*> li; *li[3].
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