
Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 8
September 24, 2018

CPSC 427, Lecture 8, September 24, 2018 1/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Etudes in Coding

Problem Set 1 Design Issues

Brackets Example

CPSC 427, Lecture 8, September 24, 2018 2/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Etudes in Coding

CPSC 427, Lecture 8, September 24, 2018 3/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Overview

Software construction is much like other activities that combine
design with skills.

Piano students practice scales and études as well as learning to
play Beethoven piano sonatas.

Ballet dancers do barre exercises to acquire the skills needed to
dance Nutcracker.

Authors learn good writing style by having others criticize their
own work.

Today I present some examples of programs and try to point out
the design decisions that impact the cleanliness and robustness of
the result.

CPSC 427, Lecture 8, September 24, 2018 4/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Problem Set 1 Design Issues

CPSC 427, Lecture 8, September 24, 2018 5/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

// Solution by Michael J. Fischer

// Calculate a user’s age

void run() {

string first;

string last;

int birthYear;

int age;

// Get current year

const time_t now = time(nullptr); // get current time

struct tm* today = localtime(&now); // break into parts yr-mon-day

const int thisYear = 1900 + today->tm_year; // tm_year counts years from 1900

cout << "Please enter your first name: ";

cin >> first;

if (!cin.good()) fatal("Error reading first name");

cout << "Please enter your last name: ";

cin >> last;

if (!cin.good()) fatal("Error reading last name");

cout << "Please enter the year of your birth: ";

cin >> birthYear;

if (!cin.good()) fatal("Error reading age");

age = thisYear - birthYear;

cout << first << " " << last << " becomes " << age << " years old in "

<< thisYear << "." << endl;

}

CPSC 427, Lecture 8, September 24, 2018 6/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Comments on my code
Good points:

I Logical progression towards solution: get year, get first name,
get last name, get birth year, compute age, print results.

I Most obscure part of getting current year is commented.

I Identifiers are compromise between length and clarity.

I All I/O errors are detected, reported, and handled as required.

Drawbacks:

I Code is monolithic.

I User-interaction is intermixed with computation.

I Variables related to user (first, last, birthYear, age) are not
separated from intermediate variables (now, today, thisYear).

I General computation is not isolated from input-specific code.

CPSC 427, Lecture 8, September 24, 2018 7/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

A student solution, function isgood()

// --

// Function to check for input errors and then concatenate first and last name

// string inputs.

void isgood(string *name, string *temp)

{

cin >> *temp;

if (cin.good()) {

*name = *name + *temp;

}

else {

fatal("Invalid input.");

}

}

CPSC 427, Lecture 8, September 24, 2018 8/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Comments on isgood()
Good points:

I Clear separation from surrounding code.

I Clear statement of purpose, but incomplete.

I Uses cin.good() for error checking as required.

Drawbacks:

I Statement of purpose omits mention of string read.

I Function name suggests only the checking part.

I A check-only founction should be const and return a bool.

I The actions to take with a successful or unsuccessful read
should not be the concern of the checking function.

I name should not be a parameter.

I Output parameter temp should be of reference type string&.

CPSC 427, Lecture 8, September 24, 2018 9/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

A student solution, function calctime()

// --

// Function to check for input errors and then calculate both the current year

// and the age of the user using time() and localtime().

void calctime(int *age, int *year)

{

int birth;

cin >> birth;

if (cin.good()) {

time_t current;

struct tm * localhold;

time(¤t);

localhold = localtime(¤t);

*year = 1900 + localhold->tm_year;

*age = *year - birth;

}

else {

fatal("Invalid input.");

}

}

CPSC 427, Lecture 8, September 24, 2018 10/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Comments on calctime()

Similar coments to isgood().

Main drawback is that user interaction, data reading, error
checking, and time calculations are carried out by the same
function.

When we get to classes,age and year would be data members of
the class containing calctime(), and calctime() would need no
parameters.

Minor formatting problem: Left bracket { should be at end of
isgood line, not on a line by itself. Applies to isgood() as well.

CPSC 427, Lecture 8, September 24, 2018 11/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

A student solution, function run()

// --

// Run function that prints out user prompts and calls subsidiary functions for

// processing submitted inputs.

void run() {

string name;

string temp;

cout << "Please enter your first name: ";

isgood(&name, &temp);

name = name + " "; // adds a space between first and last name

cout << "Please enter your last name: ";

isgood(&name, &temp);

int age;

int year;

cout << "Please enter the year of your birth: ";

calctime(&age, &year);

cout << name << " becomes " << age << " years old in " << year << ".\n";

}

CPSC 427, Lecture 8, September 24, 2018 12/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Comments on run()

Good points:

I Correctly formatted function definition.

I Checks both first name and last name for read errors.

I Checking code is not replicated.

I Consistent top-level structure for handling names and birth
year.

Drawbacks:

I No need to use expensive string concatenation. name is
unnecessary. Better to have separate first and last string
variables.

CPSC 427, Lecture 8, September 24, 2018 13/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Brackets Example

CPSC 427, Lecture 8, September 24, 2018 14/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Code demo

The 08-Brackets demo contains three interesting classes and
illustrates the use of constructors, destructors, and dynamic
memory management as well as a number of newer C++ features.

It is based on the example in section 4.5 of “Exploring C++”, but
there are several significant modifications to the code.

Many of the changes use features of c++17 and would not work
under the older standard. Others reflect different design
philosophies.

We briefly summarize below some of the features of the demo.

CPSC 427, Lecture 8, September 24, 2018 15/25

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/08-Brackets/

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

The problem

The problem is to check a file to see if the brackets match and are
properly nested.

For example, ([]()) is okay, but ([)] is not, nor is (())) or [[[.

CPSC 427, Lecture 8, September 24, 2018 16/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

A bracket matching algorithm

Rules for bracket matching:

1. Each left bracket is pushed onto the stack.

2. An attempt is made to match each right bracket with the top
character on the stack.

3. The attempt fails if
I The stack is empty, or
I The top character is a different type of bracket (e.g., round

instead of square).

4. If the match fails, an error comment is printed, the
mismatched characters are discarded, and processing
continues with the next character.

5. At end-of-file, the stack should be empty, for any remaining
characters on the stack are unmatched left brackets.

CPSC 427, Lecture 8, September 24, 2018 17/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Program design

The program is organized into four modules.

1. Class Token wraps a single character. It contains functions for
determining which characters are brackets, and for each
bracket, its “sense” (left or right), and its “type” (round,
square, curly, or angle).

2. Class Stack implements a general-purpose growable stack of
objects of copyable type T. In this case, T is typedef’ed to
Token.

3. Class Brackets implements the matching algorithm. It reads
the file and carries out the matching algorithm.

4. main.cpp contains the main program. It processes the
command line, opens the file, and invokes the bracket checker.

CPSC 427, Lecture 8, September 24, 2018 18/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Token class

Major points:

1. enum is used to encode the bracket type (round, square, etc.)
and the sense of the bracket (left, right).

2. The two enum types are defined inside of class Token and are
private.

3. ch is the character representing the bracket, used for printing.

4. classify() is a private function.

5. The definitions of print() and operator<< follow our usual
paradigms.

CPSC 427, Lecture 8, September 24, 2018 19/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Token class (cont.)

6. The Token constructor uses a ctor to initialize data member
ch. This overrides the default member initializer present in
the declaration of ch. The constructor calls classify() to
initialize the other data members.

7. In the ctor :ch(ch) , the first ch refers to the data member
and the second refers to the constructor argument.

8. In the textbook version of Token, the static object brackets
is local to classify(). It is now a static class object,
initialized in token.cpp.

CPSC 427, Lecture 8, September 24, 2018 20/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Token design questions

1. The textbook version of Token uses getters to return type

and sense. getType() was used to test if a newly-read
character was a bracket, and it was also used to see if a left
bracket and right bracket were the same type.
Why were they needed?

2. The new version of Token replaces getType() with boolean
functions isBracket() and sameTypeAs() functions.
Similarly, getSense() was replaced by boolean function
isLeft().

With these changes, enum BracketType and TokenSense are
no longer needed outside of Token and hence are now private.

What are the pros and cons of this design decision?

CPSC 427, Lecture 8, September 24, 2018 21/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Token design questions (cont.)

3. Both the old and new versions of the program work whether
or not brackets is static.

I Is static a better choice here?
I Why or why not?
I Does your answer depend on whether the object is local (old

code) or class (new code)?

CPSC 427, Lecture 8, September 24, 2018 22/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Stack class

Major points:

1. T is the element type of the stack. This code implements a
stack of Token. (See typedef declaration.)

2. Storage for stack is dynamically allocated in the constructor
using new[] and deleted in the destructor using delete[].

3. The copy constructor and assignment operator have been
deleted to avoid “double delete” problens with the dynamic
extension.

4. The square brackets are needed for both new and delete

since the stack is an array.

5. delete[] calls the destructor of each Token on the stack.
Okay here because the token destructor is null.

CPSC 427, Lecture 8, September 24, 2018 23/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Stack class (cont.)

6. push() grows stack by creating a new stack of twice the size,
copying the old stack into the new, and deleting the old stack.
This results in linear time for the stack operations.

7. If push() only grew the stack one slot at a time, the time
would grow quadratically.

CPSC 427, Lecture 8, September 24, 2018 24/25

Outline Etudes in Coding Problem Set 1 Design Issues Brackets Example

Stack design questions

1. Should pop() return a value?

2. Why does stack have a name field?

3. size() isn’t used. Should it be eliminated?

4. Stack::print() formerly declared p and pend at the top.
Now they are declared just before the loop that uses them. Is
this better, and why?

5. Could they be declared in the loop? What difference would it
make?

CPSC 427, Lecture 8, September 24, 2018 25/25

	Etudes in Coding
	Problem Set 1 Design Issues
	Brackets Example

