
Outline Brackets Example Storage Management

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 10
October 1, 2018

CPSC 427, Lecture 10, October 1, 2018 1/20

Outline Brackets Example Storage Management

Brackets Example (continued from lecture 8)
Stack class
Brackets class
Main file

Storage Management

CPSC 427, Lecture 10, October 1, 2018 2/20

Outline Brackets Example Storage Management

Brackets Example (continued from lecture 8)

CPSC 427, Lecture 10, October 1, 2018 3/20

Outline Brackets Example Storage Management

Stack class

Stack class

Major points:

1. T is the element type of the stack. This code implements a
stack of Token. (See typedef declaration.)

2. Storage for stack is dynamically allocated in the constructor
using new[] and deleted in the destructor using delete[].

3. The copy constructor and assignment operator have been
deleted to avoid “double delete” problems with the dynamic
extension.

4. The square brackets are needed for both new and delete

since the stack is an array.

5. delete[] calls the destructor of each Token on the stack.
Okay here because the token destructor is null.

CPSC 427, Lecture 10, October 1, 2018 4/20

Outline Brackets Example Storage Management

Stack class

Stack class (cont.)

6. push() grows stack by creating a new stack of twice the size,
copying the old stack into the new, and deleting the old stack.
This results in linear time for the stack operations.

7. If push() only grew the stack one slot at a time, the time
would grow quadratically.

CPSC 427, Lecture 10, October 1, 2018 5/20

Outline Brackets Example Storage Management

Stack class

Stack design questions

1. Should pop() return a value?

2. Why does stack have a name field?

3. size() isn’t used. Should it be eliminated?

4. Stack::print() formerly declared p and pend at the top.
Now they are declared just before the loop that uses them. Is
this better, and why?

5. Could they be declared in the loop? What difference would it
make?

CPSC 427, Lecture 10, October 1, 2018 6/20

Outline Brackets Example Storage Management

Brackets class

Brackets class

1. Data member stk is dynamically allocated in the constructor
and deleted in the destructor. It is an object, not an array,
and does not use the []-forms of new and delete.

2. The type of stk has changed from Stack* to Stack. We can
now print the stack by writing cout << stk. Formerly, we
wrote stk->print(cout).

3. in.get(ch) reads the next character without skipping
whitespace. There are other ways to do this as well.

4. If read is !in.good(), we break from the loop and do
further tests to find the cause.

5. Old functions analyze() and mismatch() have been
replaced by checkFile() and checkChar(). This largely
separates the file I/O from the bracket-checking logic.

CPSC 427, Lecture 10, October 1, 2018 7/20

Outline Brackets Example Storage Management

Brackets class

Brackets design questions

I What are the pros and cons of stk having type Stack& rather
than Stack*?

I The old mismatch() uses the eofile argument to distinguish
two different cases.

void Brackets::

mismatch(const char* msg, Token tok, bool eofile) {

if (eofile) cout <<"\nMismatch at end of file: " <<msg <<endl;

else cout <<"\nMismatch on line " <<lineno <<" : " <<msg <<endl;

stk->print(cout); // print stack contents

if (!eofile) // print current token, if any

cout <<"The current mismatching bracket is " << tok;

fatal("\n"); // Call exit.

}

Is this a good design?

CPSC 427, Lecture 10, October 1, 2018 8/20

Outline Brackets Example Storage Management

Main file

Main file

1. main() follows our usual pattern, except that it passes argc

and argv on to the function run(), which handles the
command line arguments.

2. run() opens the input file and passes the stream in to
analyze().

3. The istream in will not be closed if an error is thrown (except
for the automatic cleanup that happens when a program
exits). How might we fix the program?

4. Question: Which is better, to pass the file name or an open
stream? Why?

CPSC 427, Lecture 10, October 1, 2018 9/20

Outline Brackets Example Storage Management

Storage Management

CPSC 427, Lecture 10, October 1, 2018 10/20

Outline Brackets Example Storage Management

Objects and storage

Objects have several properties:

I A name. This is one way to access the object.

I A type. This determines the size and encoding of the
allowable data values.

I A storage block. This is a block of memory big enough to
hold any legal value of the specified type.

I A lifetime. This is the time span between an object’s creation
and its demise. Data left behind in an object’s storage block
after it has died is unpredictable and shouldn’t be used.

I A storage class. This determines the lifetime of the object,
where the storage block is located in memory, and how it is
managed.

CPSC 427, Lecture 10, October 1, 2018 11/20

Outline Brackets Example Storage Management

Name

An object may have one or more names, or none at all!

Not all names are created equal. A name may exist but not be
visible in all contexts.

I It is not visible from outside of the block in which it is defined.

I For a class data member, the name’s visibility may be
restricted, e.g., by the private keyword.

I An object may have more than one name. This is called
aliasing.

I An object may have no name at all. Such an object is called
anonymous. It can only be accessed via a pointer or
subscript.

CPSC 427, Lecture 10, October 1, 2018 12/20

Outline Brackets Example Storage Management

Type of a storage object

Declaration: int n = 123;

This declares an object of type int, name n, and an int-sized
storage block, which will be initialized to 123. It’s lifetime begins
when the declaration is executed and ends on exit from the
enclosing block. The storage class is auto (stack).

The unary operator sizeof returns the storage size (in bytes).

sizeof can take either an expression or a parentheses-enclosed
type name, e.g., sizeof n or sizeof(int).

In case of an expression, the size of the result type is returned,
e.g., sizeof (n+2.5) returns 8, which is the size of a double on
my machine.

CPSC 427, Lecture 10, October 1, 2018 13/20

Outline Brackets Example Storage Management

Storage block

Every object is represented by a block of storage in memory.

This memory has an internal machine address, which is not
normally visible to the programmer.

The size of the storage block is determined by the type of the
object.

CPSC 427, Lecture 10, October 1, 2018 14/20

Outline Brackets Example Storage Management

Connecting names to objects
A name can be given to an anonymous object at a later time by
using a reference type.

#include <iostream>

using namespace std;

int main() {
int* p;

p = new int; // Creates an anonymous int object

*p = 3; // Store 3 into the anonymous object

cout << *p << endl;

int& x = *p; // Give object *p the name x

x = 4;

cout << *p << " " << x << endl;

}
/* Output

3

4 4

*/

CPSC 427, Lecture 10, October 1, 2018 15/20

Outline Brackets Example Storage Management

Lifetime

Each object has a lifetime.

The lifetime begins when the object is created or allocated.

The lifetime ends when the object is deleted or deallocated.

CPSC 427, Lecture 10, October 1, 2018 16/20

Outline Brackets Example Storage Management

Storage class

C++ supports three different storage classes.

1. auto objects are created by variable and parameter
declarations. (This is the default.)
Their visibility and lifetime is restricted to the block in which
they are declared.
The are deleted when control finally exits the block (as
opposed to temporarily leaving via a function call).

2. new creates anonymous dynamic objects. They exist until
explicitly destroyed by delete or the program terminates.

3. static objects are created and initialized at load time and
exist until the program terminates.

CPSC 427, Lecture 10, October 1, 2018 17/20

Outline Brackets Example Storage Management

Dynamic extensions

Recall that objects have a fixed size determined solely by the
object type.

A variable-sized “object” is modeled in C++ by an object with a
dynamic extension. This object has a pointer (or reference) to a
dynamically allocated object (generally an array) of the desired
size.

Example from stack.hpp.
class Stack {
private:

int max = INIT_DEPTH; // Number of slots in stack.

int top = 0; // Stack cursor.

T* s = new T[max]; // Pointer to stack base.

string name; // Print name of this stack.

...

CPSC 427, Lecture 10, October 1, 2018 18/20

Outline Brackets Example Storage Management

Copying

A source object can be copied to a target object of the same type.

A shallow copy copies each source data member to the
corresponding target data member. By default, this is done by
performing a byte-wise copy of the source object’s storage block to
the target object’s storage block, overwriting its previous contents.

For objects with dynamic extensions, the pointer to the extension
gets copied, not the extension itself. This causes the target to end
up sharing the extension with the source, and the target’s previous
extension becomes inaccessible. This results in aliasing—multiple
pointers referring to the same object, which can cause a memory
leak.

A deep copy recursively copying the extensions as well.

CPSC 427, Lecture 10, October 1, 2018 19/20

Outline Brackets Example Storage Management

The double-delete problem

An object with dynamic extension typically uses new in the
constructor and delete in the destructor to create and free the
object.

When a shallow copy results in two objects sharing the same
extension, then attempts will be made to delete the extension when
each of the two copies of the object are deleted or go out of scope.

The first delete will succeed; the second will fail since the same
object cannot be deleted twice.

This is called the double delete problem and is a major source of
memory management errors in C++.

Takeaway: Don’t copy objects with dynamic extensions.

CPSC 427, Lecture 10, October 1, 2018 20/20

	Brackets Example (continued from lecture 8)
	Stack class
	Brackets class
	Main file

	Storage Management

