
Outline Copying and Assignment Custody of Objects Move Semantics

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 11
October 3, 2018

CPSC 427, Lecture 11, October 3, 2018 1/24

Outline Copying and Assignment Custody of Objects Move Semantics

Copying and Assignment

Custody of Objects

Move Semantics

CPSC 427, Lecture 11, October 3, 2018 2/24

Outline Copying and Assignment Custody of Objects Move Semantics

Copying and Assignment

CPSC 427, Lecture 11, October 3, 2018 3/24

Outline Copying and Assignment Custody of Objects Move Semantics

When does copying occur?

C++ has two operators defined by default that make copies:

1. The assignment statement.

2. The copy constructor.

The symbol = means assignment when used in a statement, and it
invokes the copy constructor when used as an initializer.
Call-by-value argument passing also uses the copy constructor.

Assignment modifies an existing object;

The copy constructor initializes a newly-allocated object.

CPSC 427, Lecture 11, October 3, 2018 4/24

Outline Copying and Assignment Custody of Objects Move Semantics

Assignment

The assignment operator = is implicitly defined for all types. The
assignment b=a modifies an already-existing object b as follows:

I If a and b are primitive types, the storage object a is copied
to the storage object b (after performing any implicit
conversions such as converting a short int to an int). In
the case of pointer types, this results in a and b pointing to
the same block of memory.

I If a and b are objects, then each data member of a is
recursively assigned to the corresponding data member of b,
using the assignment operator defined for the data member’s
type.

CPSC 427, Lecture 11, October 3, 2018 5/24

Outline Copying and Assignment Custody of Objects Move Semantics

Copy constructor

The copy constructor is implicitly defined for all types. Like any
constructor, it can be used to initialize a newly-allocated object.

I Call-by-value uses the copy constructor to initialize a function
parameter from the actual argument.

I The copy constructor can also be used to initialize a
newly-created object.

The implicit copy constructor uses shallow copy, so any use of it
on an object with dynamic extension leads to the double delete
problem.

CPSC 427, Lecture 11, October 3, 2018 6/24

Outline Copying and Assignment Custody of Objects Move Semantics

Redefining assignment and the copy constructor

You can override the implicit assignment operator for a class T by
defining the function with signature T& operator=(const T&);.

You can override the implicit the copy constructor by defining the
function with signature T(const T&).

If an implicit definition has been automatically deleted but you
want it, use =default.

If an implicit definition has been automatically created but you
don’t want it, use =delete.

If you don’t intend to use the copy assignment or constructor,
deleting them prevents their accidental use.

CPSC 427, Lecture 11, October 3, 2018 7/24

Outline Copying and Assignment Custody of Objects Move Semantics

Custody of Objects

CPSC 427, Lecture 11, October 3, 2018 8/24

Outline Copying and Assignment Custody of Objects Move Semantics

Copying and Moving

One of the goals of C++ is to make user-defined objects look as
much like primitive objects as possible.

In particular, they can reside in static storage, on the stack, or in
the heap, they can be passed to and returned from functions, and
they can be initialized and assigned to.

With primitive types, initialization, assignment, call-by-value
parameters and function return values are all implemented by a
simple copy of the primitive value.

The same is done with objects, but shallow copy is used by default.

This can lead to problems with large objects (cost) and with
objects having dynamic extensions (double-delete problem)
discussed above.

CPSC 427, Lecture 11, October 3, 2018 9/24

Outline Copying and Assignment Custody of Objects Move Semantics

Custody

We say that a function or class has custody of a
dynamically-allocated object if it is responsible for eventually
deleting the object.

A simple strategy for managing a dynamic extension in a class is
for the constructor to create the extension using new and for the
destructor to free it using delete.

In this case, we say that custody remains in the class.

CPSC 427, Lecture 11, October 3, 2018 10/24

Outline Copying and Assignment Custody of Objects Move Semantics

Transfer of Custody

Sometimes we need to transfer custody of a dynamic object from
one place to another.

For example, a function might create an object and return a
pointer to it. In this case, custody passes to the caller, since the
creating function has given up custody when it returns.

Example:

Gate* makeGate(...) {

return new Gate(...);

}

CPSC 427, Lecture 11, October 3, 2018 11/24

Outline Copying and Assignment Custody of Objects Move Semantics

Custody of dynamic extensions

Similarly, with a shallow copy of an object with a dynamic
extensions, there is an implicit transfer of custody of the dynamic
extension from the old object to the new.

Problem: How does the old object give up custody? Possibilities:

1. Explicitly set the pointer to the dynamic extension in the old
object to nullptr.

2. Destroy the old object.

The first is cumbersome and error-prone. The second causes a
double-delete if the destructor does a delete of the dynamic
extension.

CPSC 427, Lecture 11, October 3, 2018 12/24

Outline Copying and Assignment Custody of Objects Move Semantics

Move versus copy

What we want in these cases is to move the object instead of
copying it. The move first performs the shallow copy and then
transfers custody to the copy.

Move semantics were introduced in C++ in order to solve this
problem of transfer of custody of dynamic extensions.

CPSC 427, Lecture 11, October 3, 2018 13/24

Outline Copying and Assignment Custody of Objects Move Semantics

Move Semantics

CPSC 427, Lecture 11, October 3, 2018 14/24

Outline Copying and Assignment Custody of Objects Move Semantics

When to move?

With primitives, move and copy are the same. With large objects
and objects with dynamic extensions, the programmer needs to be
able to control whether to move or copy.

C++ has a kind of type called an rvalue reference.

An rvalue reference to a type T is written T&&.

Intuitively, an rvalue reference is a reference to a temporary. The
actual semantics are more complicated.

CPSC 427, Lecture 11, October 3, 2018 15/24

Outline Copying and Assignment Custody of Objects Move Semantics

Temporaries

Conceptually, a pure value is a disembodied piece of information
floating in space.

In reality, values always exist somewhere—in variables or in
temporary registers.

Languages such as Java distinguish between primitive values like
characters and numbers that can live on the stack, and object
values that live in permanent storage and can only be accessed via
pointers.

A goal of C++ is to make primitive values and objects look as
much alike as possible. In particular, both can live on the stack, in
dynamic memory, or in temporaries.

CPSC 427, Lecture 11, October 3, 2018 16/24

Outline Copying and Assignment Custody of Objects Move Semantics

Move semantics

An object can be moved instead of copied. The idea is that the
data in the source object is removed from that object and placed
in the target object. The source object is then said to be empty.

As we will see, what actually happens to the source object depends
on the object’s type.

For objects with dynamic extensions, the pointer to the extension
is copied from source to target, and the source pointer is set to
nullptr.

Any later attempt to delete nullptr is a no-op and causes no
problems.

We say that custody has been transferred from source to target.

CPSC 427, Lecture 11, October 3, 2018 17/24

Outline Copying and Assignment Custody of Objects Move Semantics

Motivation

A big motivation for move semantics comes from containers such
as vector.

Containers need to be able to move objects around. Old-style
containers can’t work with dynamic extensions.

C++ containers support moving an object into or out of the
container.

While in the container, the container has custody of the object.

Move is like a shallow copy, but it avoids the double-delete
problem.

CPSC 427, Lecture 11, October 3, 2018 18/24

Outline Copying and Assignment Custody of Objects Move Semantics

Implementation in C++

Here are the changes to C++ that enable move semantics.

1. The type system is extended to include rvalue references.
These are denoted by double ampersand, e.g., int&&.

2. Results in temporaries are marked as having rvalue reference
type.

3. A class has now six special member functions: constructor,
destructor, copy constructor, copy assignment, move
constructor, move assignment. These are special because they
are defined automatically if the programmer does not redefine
them.

CPSC 427, Lecture 11, October 3, 2018 19/24

Outline Copying and Assignment Custody of Objects Move Semantics

Move and copy constructors and assignment operators

Copy and move constructors are distinguished by their prototypes.

class T:

I Copy constructor: T(const T& other) { ... }
I Move constructor: T(T&& other) { ... }

Similarly, copy and move assignment operators have different
prototypes.

class T:

I Copy assignment: T& operator=(const T& other) {
... }

I Move assignment: T& operator=(T&& other) { ... }

CPSC 427, Lecture 11, October 3, 2018 20/24

Outline Copying and Assignment Custody of Objects Move Semantics

Default constructors and assignment operators

Under some conditions, the system will automatically create
default move and copy constructors and assignment operators.

The default copy constructors and copy assignment operators do a
shallow copy. Object data members are copied using the copy
constructor/assignment operator defined for the object’s class.

The default move constructors and move assignment operators do
a shallow copy. Object data members are moved using the move
constructor/assignment operator defined for the object’s class.

Default definitions can be specified or inhibited by use of the
keywords =default or =delete.

CPSC 427, Lecture 11, October 3, 2018 21/24

Outline Copying and Assignment Custody of Objects Move Semantics

Moving from a temporary object

A mutable temporary object always has rvalue reference type.

Thus, the following code moves the temporary string created by
the on-the-fly constructor string("cat") into the vector v:

#include <string>

#include <vector>

vector<string> v;

v.push_back(string("cat"));

CPSC 427, Lecture 11, October 3, 2018 22/24

Outline Copying and Assignment Custody of Objects Move Semantics

Forcing a move from a non-temporary object

The function std::move() in the utility library can be used to
force a move from a non-temporary object.

The following code moves the string in s into the vector v. After
the move, s contains the null string.

#include <iostream>

#include <string>

#include <utility>

#include <vector>

vector<string> v;

string s;

cin >> s;

v.push_back(move(s));

CPSC 427, Lecture 11, October 3, 2018 23/24

Outline Copying and Assignment Custody of Objects Move Semantics

The full story

I’ve covered the most common uses for rvalue references, but there
are many subtle points about how defaults work and what happens
in unusual cases.

Some good references for further information are:

I Move semantics and rvalue references in C++11 by Alex
Allain.

I C++ Rvalue References Explained by Thomas Becker.

CPSC 427, Lecture 11, October 3, 2018 24/24

http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
http://thbecker.net/articles/rvalue_references/section_01.html

	Copying and Assignment
	Custody of Objects
	Move Semantics

