
Outline Pointers Feedback

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 12
October 8, 2018

CPSC 427, Lecture 12, October 8, 2018 1/24

Outline Pointers Feedback

Uses of Pointers

Feedback on Programming Style

CPSC 427, Lecture 12, October 8, 2018 2/24

Outline Pointers Feedback

Uses of Pointers

CPSC 427, Lecture 12, October 8, 2018 3/24

Outline Pointers Feedback

Array data member

A class A commonly relates to several instances of class T.

Some ways to represent this relationship.

1. Composition: A can compose an array of instances of T.
This means that the T-instances are inside of each A-instance.

2. Aggregation: A can contain a pointer to a dynamically-
allocated array of instances of T. A composes the pointer but
aggregates the T-array to which it points.

3. Fully dynamic aggregation: A can contain a pointer to a
dynamically-allocated array of pointers to instances of T. The
individual T-instances can be scattered throughout memory.

Pictures of these three methods are given on the next slides.

CPSC 427, Lecture 12, October 8, 2018 4/24

Outline Pointers Feedback

Composition

T ary[4];
T* aend = ary+4;
T* myvar = &ary[2];

T

T

T

T

ary:

aend:

Composition

myvar:

[0]

[1]

[2]

[3]

CPSC 427, Lecture 12, October 8, 2018 5/24

Outline Pointers Feedback

Aggregation

T* ary = new T[4];
T* aend = ary+4;
T* myvar = &ary[2];

aend:

myvar:

T

T

T

T

[0]

[1]

[2]

[3]

ary:

Aggregation

CPSC 427, Lecture 12, October 8, 2018 6/24

Outline Pointers Feedback

Fully dynamic aggregation

T** ary = new T*[4];
T** aend = ary+4;
for(k=0; k<4; ++k) {
 ary[k] = new T;
}
T* myvar = ary[2];

 ary:

aend:

Fully
Dynamic

Aggregation

T

T

T

T

T*

T*

T*

T*myvar:

CPSC 427, Lecture 12, October 8, 2018 7/24

Outline Pointers Feedback

Pointer Arithmetic

Addition and subtraction of a pointer and an integer gives a new
pointer.

int a[10];

int* p;

int* q;

p = &a[3];

q = &a[5];

// q-p == 2

// p+1 == &a[4];

// q-5 == &a[0];

// What is q-6?

CPSC 427, Lecture 12, October 8, 2018 8/24

Outline Pointers Feedback

Implementation

Pointers are represented internally by memory addresses.

The meaning of p+k is to add k*sizeof *p to the address stored
in p.

Example: Suppose p points to a double stored at memory
location 500, and suppose sizeof(double) == 8. Then p+1 is a
pointer to memory location 508.

508 is the memory location of the first byte following the 8 bytes
reserved for the double at location 500.

If p points to an element of an array of double, then p+1 points
to the next element of that array.

CPSC 427, Lecture 12, October 8, 2018 9/24

Outline Pointers Feedback

Feedback on Programming Style

CPSC 427, Lecture 12, October 8, 2018 10/24

Outline Pointers Feedback

Coding Hints

In the next few slides, I will point out some miscellaneous
programming issues that turned up on PS2. Proper C++ style is
somewhat different from other languages (include C). Part of
professional-level C++ proficiency is learning not just what works
but what is simple and efficient.

CPSC 427, Lecture 12, October 8, 2018 11/24

Outline Pointers Feedback

Zero-tolerance for compiler warnings

Compiler warnings flag things that are not proper C++ usage but
may work anyway in some environments. They generally indicate
program errors or sloppy style.

You need to learn what the warnings mean and how to avoid them.
Don’t just ignore warnings because you think they are
unimportant. “Unimportant” warnings will mask important ones
that result from real bugs in your code.

Example: Comparing an unsigned int with an int gives such a
warning.

Fix: Use appropriate integer types.

CPSC 427, Lecture 12, October 8, 2018 12/24

Outline Pointers Feedback

Declaration order in classes

There are two schools of thought on the order of declarations
within classes:

1. Put the public functions first followed by the private.
Rationale: The public functions represent the interface and
are what clients of the class wnat to see.

2. Put the private data members and functions first followed by
the public.
Rationale: Generally names must be declarated before they are
used. It’s natural to declare data members before functions
that might use them, even if C++ provides some flexibility.

In this course, I require the second style: private first, public last.

CPSC 427, Lecture 12, October 8, 2018 13/24

Outline Pointers Feedback

Construct semantically consistent objects

Constructors should leave objects in a semantically meaningful
state.

Avoid the paradigm common in other languages to create
uninitialized objects and then initialize data members from
member functions.

CPSC 427, Lecture 12, October 8, 2018 14/24

Outline Pointers Feedback

Use break
Instead of

bool exit = false;

while (!exit) {

...

if (...) exit = true;

else {

...

}

}

use

for (;;) {

...

if (...) break;

...

}

CPSC 427, Lecture 12, October 8, 2018 15/24

Outline Pointers Feedback

Use tolower()

Instead of

if (input==’Q’ || input==’q’) ...

use

#include <cctype>

...

input = tolower(input);

if (input==’q’) ...

CPSC 427, Lecture 12, October 8, 2018 16/24

Outline Pointers Feedback

Use switch

Instead of

if (input==’a’ || input==’b’ || input==’c’) { ... }

else if (input==’p’) {

...

use

switch (input) {

case ’a’:

case ’b’:

case ’c’: ...; break;

case ’p’: ...; break;

}

CPSC 427, Lecture 12, October 8, 2018 17/24

Outline Pointers Feedback

Use stream input to read data

Instead of

int x;

string s;

s.getline(in);

// extract substring

// convert substring to number

...

use

int x;

in >> x;

CPSC 427, Lecture 12, October 8, 2018 18/24

Outline Pointers Feedback

Instead of

for (;;) {

in >> x;

if (<error>) {

<handle error>

}

else {

<do stuff>

in >> y;

if (<error>) {

<handle error>

}

else {

<do stuff>

}

}

}

CPSC 427, Lecture 12, October 8, 2018 19/24

Outline Pointers Feedback

Use continue

for (;;) {

in >> x;

if (<error>) {

<handle error>

continue;

}

<do stuff>

in >> y;

if (<error>) {

<handle error>

continue;

}

<do stuff>

}

CPSC 427, Lecture 12, October 8, 2018 20/24

Outline Pointers Feedback

Use new and delete, not malloc and free

C uses malloc and free to allocate and free dynamic storage.

C++ uses new and delete.

What are the differences?

1. new and delete are type safe; malloc and free are not.

2. new calls the constructor and delete calls the destructor.
malloc and free are unaware of C++ classes and just handle
uninitialized storage.

3. Array forms new[] and delete[] call default constructors
and destructors of array elements.

Don’t use malloc and free in C++ programs.

CPSC 427, Lecture 12, October 8, 2018 21/24

Outline Pointers Feedback

End-of-file handling

Don’t use

while (!in.eof()) {

in >> x;

<do stuff with x>

}

to read and process a file of numbers. Even if in.eof() returns
false, the next read might fail. Instead, use

for (;;) {

in >> x;

if (in.fail()) { <handle error/eof condition> }

<do stuff with x>

}

CPSC 427, Lecture 12, October 8, 2018 22/24

Outline Pointers Feedback

Include guards

Include guards are a method of using the C++ preprocessor to
make sure that the declarations in a header file are not included
more than once in a compilation. Here’s how they work:

I A preprocessor symbol GATE HPP is associated with a header
file gate.hpp. Initially, GATE HPP is undefined.

I Before gate.hpp is processed, #ifndef GATE HPP is used to
test if GATE HPP is already defined.

I If it is, gate.hpp has already been processed and is skipped.

I If not, #define GATE HPP defines GATE HPP and the header
file gate.hpp is processed.

CPSC 427, Lecture 12, October 8, 2018 23/24

Outline Pointers Feedback

Where do the include guards go?

They could be used to protect either the #include "gate.hpp"

statement or the body of the header file gate.hpp.

Because there may be many #include "gate.hpp" statements in
the program but there is only one gate.hpp file, they are normally
placed inside the header file itself, e.g.,

// File gate.hpp

#ifndef GATE_HPP

#define GATE_HPP

<body of header file>

#endif

CPSC 427, Lecture 12, October 8, 2018 24/24

	Uses of Pointers
	Feedback on Programming Style

