e
Outline Bar Graph Demo
: :

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 13
October 15, 2018

: :
CPSC 427, Lecture 13, October 15, 2018 1/18

e
Outline Bar Graph Demo
| |

Bar Graph Demo

CPSC 427, Lecture 13, October 15, 2018 2/18
e

e
Outline Bar Graph Demo
: :

Bar Graph Demo

CPSC 427, Lecture 13, October 15, 2018 3/18
s

Outline Bar Graph Demo
: :

Overview of bar graph demo

These slides refer to demo 13-BarGraph.

This demo reads a file of student exam scores, groups them by
deciles, and then displays a bar graph for each decile.

The input file has one line per student containing a 3-letter
student code followed by a numeric score.

AWE 00
MJF 98
FDR 75

Scores should be in the range [0, 100]

: :
CPSC 427, Lecture 13, October 15, 2018 4/18
e

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/13-BarGraph/

Outline

Bar Graph Demo

Overview (cont.)
The output consists of one line for each group listing all of the
students falling in that group. An 11*" line is used for students
with invalid scores.

Sample output:

00.
10.
20.
30.
40.
50.
60.
70.
80.
90.

.09:
.19:
.29:
.39:
.49:
.59:
.69:
.79:
.89:
.99:
Errors:

AWF

PLK

ABA
PRD
HST
AEF
GBS
ALA

0

37

56

68 RBW 69

79 PDB 71 FDR 75
89 ABC 82 GLD 89
92 MJF 98

105 JBK -1

CPSC 427, Lecture 13, October 15, 2018

5/18

Outline Bar Graph Demo
: :

Method

Each student is represented by an Item object that consists of the
initials and a score.

The program maintains 11 linked lists of Item, one for each bar of
the graph. A bar is represented by a Row object.

For each line of input, an Item is constructed, classified, and
inserted into the appropriate Row.

When all student records have been read in, the bars are printed.

A Graph object contains the bar graph as well as the logic for
creating a bar graph from a file of scores as well as for printing it
out.

: :
CPSC 427, Lecture 13, October 15, 2018 6/18

Outline Bar Graph Demo
: :

Analysis of 13-BarGraph demo

> main.cpp

» graph.hpp

» graph.cpp

» row.hpp

> Tow.Ccpp

» rowNest.hpp
» item.hpp

: :
CPSC 427, Lecture 13, October 15, 2018 7/18

e

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/13-BarGraph/

Outline Bar Graph Demo

main.cpp

Points to note:

» run() calls a static class method Graph: :instructions()
to print out usage information. It is called without an implicit
parameter.

By being static, the instructions can be printed before any
Graph object is created.

> The file uses cin.getline() to safely read the file name into
a char array fname.
The simpler cin >> fname is unsafe. It should never be used.
It would be okay if fname were a string.

> After the file has been opened, the work is done in two lines:

Graph curve(infile); // Declare and construct a Graph object.
cout << curve; // Print the graph.

CPSC 427, Lecture 13, October 15, 2018 8/18

Outline Bar Graph Demo
: :

Design issues for main.cpp

1. Should instructions be a static class method or a static
constant?

2. Should fname be a char[] or a string? If the latter, how
does one prevent buffer overrun?

3. Where should the file opening code go — in run() (where it is
now), in Graph, or in a new controller class?

: :
CPSC 427, Lecture 13, October 15, 2018 9/18
s

Outline

Bar Graph Demo
:

graph.hpp

Points to note:

> Class Graph aggregates 11 bars Row.

» The Row array is created by the constructor and deleted by
the destructor.

» insert() is a private function. It creates an Item and inserts
it into one of the Rows.

» instructions() is a static inline function. This shows how
it is defined.

» instructions() could also be made out-of-line in the usual
way, but the word static must not be given in the definition
in the .cpp file; only in the declaration in the .hpp file.

| CPSC 427, Lecture 13, October 15, 2018 10/18 |

00

Outline Bar Graph Demo
: :

graph. cpp

Points to note:

» The for-loop in the constructor does not properly handle
error conditions and can get into an infinite loop.
You should test yourself to be sure you know how to fix this
problem.

» The constructor has an allocation loop. The destructor has a
corresponding deallocation loop.

» bar[index]->insert(initials, score);
shows the use of a subscript and a pointer dereferencing in
the same statement.

» Why do we need the * in
out << xbar[k] <<"\n";

: :
CPSC 427, Lecture 13, October 15, 2018 11/18

Outline Bar Graph Demo
:

Design issues for Graph class

1. Note the use of the C preprocessor to allow preprocessor
macro NESTED to cause compilation in two different ways.

2. Could we declare bar as Row& bar [BARS]? How might this
affect the program?
3. Should initials be a string?

4. Why is there a potential infinite loop? What should be done
about it?

:
CPSC 427, Lecture 13, October 15, 2018 12/18
e

Outline Bar Graph Demo
: :

Design issues in main.cpp, graph.hpp, and graph.cpp

> Why is it useful for Graph to know the file name?

» If both infile and fname are passed as parameters to
Graph(), the precondition that stream infile is opened on
file fname cannot be checked. Why is this undesirable?

» What are the consequences of moving the file-opening code
from run() to:

» main.cpp, just after the call to banner()?
» To the Graph constructor?
» To a new controller class?

» Why is there a potential infinite loop in the Graph
constructor? What should be done to fix it?

: :
CPSC 427, Lecture 13, October 15, 2018 13/18

Outline Bar Graph Demo
: :

row.hpp

Points to note:

» This file contains two tightly coupled classes, Cell and Row.
» The line friend class Row in Cell gives Row permission to
access private data and methods of Cell.
» A class can give friendship. It cannot take friendship.
» The Cell constructor combines two operations that could be
separated:
1. It creates a new Item from a C-string and an integer;
2. It creates a new fully initialized Cell containing as data a
pointer to the newly-created Item.
» A Row has a head that points to the first Cell in a linked list.

: :
CPSC 427, Lecture 13, October 15, 2018 14/18

Outline Bar Graph Demo

Tow.cpp

Points to note:

» There is some clever coding in the Row constructor.
Is this a good design?

» The destructor in Row deletes the entire linked list of Cells.
Why shouldn't this be done in the Cell destructor?

> insert creates a new Cell and puts it on the linked list.
Where does it go?

» In Row: :print (), the code reaches through Cell into
Item: :print ().
This violates the rule, “Don’t talk to strangers.”
» Is it okay in this context?
» Why or why not?
» What would the alternative be? [Hint: Delegation.]

CPSC 427, Lecture 13, October 15, 2018 15/18

Outline Bar Graph Demo
:

rowNest . hpp

This is an alternative definition of class Row with the same public
interface and behavior but different internal structure.

Points to note:

> In row.hpp, Cell is a top-level class in which everything is
private. The friend declaration allows Row to use it.

> In rowNest.hpp, Cell is declared as a private class inside of
Row, but everything in Row is public. Since only Row can
access the class name, nobody else can access it.

> In all other respects, row.hpp and rowNest.hpp are identical.
> To determine which is used, change the #include in
graph.hpp.

:
CPSC 427, Lecture 13, October 15, 2018 16/18

Outline Bar Graph Demo
: :

Discussion of row.hpp vs. rowNest.hpp

What are the questions you should be asking yourself when
deciding which version you prefer?

CPSC 427, Lecture 13, October 15, 2018 17/18
e

Outline Bar Graph Demo
:

item.hpp

This is a data class. In C, one would use a struct, but C++
permits tighter semantic control.

Points to note:

» The fields are private. They are initialized by the constructor
and never changed after that.

> The only use made of those fields is by print (). Hence there
is no need even for getter functions.

» Item could have been defined as a subclass of class Row.
What are the pros and cons of such a decision?

CPSC 427, Lecture 13, October 15, 2018 18/18

	Bar Graph Demo

