
Outline Circularity Modeling

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 14
October 22, 2018

CPSC 427, Lecture 14, October 22, 2018 1/15

Outline Circularity Modeling

Handling Circularly Dependent Classes

Modeling the Think-A-Dot Machine

CPSC 427, Lecture 14, October 22, 2018 2/15

Outline Circularity Modeling

Handling Circularly Dependent Classes

CPSC 427, Lecture 14, October 22, 2018 3/15

Outline Circularity Modeling

Tightly coupled classes

Class B depends on class A if B refers to elements declared within
class A or to A itself.

The class B definition must be read by the compiler after reading A.

This is often ensured by putting #include "A.hpp" at the top of
file B.hpp.

A pair of classes A and B are tightly coupled if each depends on the
other.

It is not possible to have each read after the other.

Whichever the compiler reads first will cause the compiler to
complain about undefined symbols from the other class.

CPSC 427, Lecture 14, October 22, 2018 4/15

Outline Circularity Modeling

Example: List and Cell
Suppose we want to extend a cell to have a pointer to a sublist.

class Cell {

int data;

List* sublist;

Cell* next;

...

};

class List {

Cell* head;

...

};

This won’t compile, because List is used (in class Cell) before
it is defined. But putting the two class definitions in the opposite
order also doesn’t work since then Cell would be used (in class

List) before it is defined.

CPSC 427, Lecture 14, October 22, 2018 5/15

Outline Circularity Modeling

Circularity with #include
Circularity is less apparent when definitions are in separate files.

File list.hpp:
#pragma once

#include "cell.hpp"

class List { ... };

File cell.hpp:
#pragma once

#include "list.hpp"

class Cell { ... };

File main.cpp:
#include "list.hpp"

#include "cell.hpp"

int main() { ... }

CPSC 427, Lecture 14, October 22, 2018 6/15

Outline Circularity Modeling

What happens?

In this example, it appears that class List will get read before
class Cell since main.cpp includes list.hpp before cell.hpp.

Actually, the opposite occurs. The compiler starts reading
list.hpp but then jumps to cell.hpp when it sees the #include

"cell.hpp" line.

It jumps again to list.hpp when it sees the #include

"list.hpp" line in cell.hpp, but this is the second attempt to
load list.hpp, so it only gets as far as #pragma once. It then
resumes reading cell.hpp and processes class Cell.

When done with cell.hpp, it resumes reading list.hpp and
processes class List.

CPSC 427, Lecture 14, October 22, 2018 7/15

Outline Circularity Modeling

Resolving circular dependencies
Several tricks can be used to allow tightly coupled classes to
compile. Assume A.hpp is to be read first.

1. Suppose the only reference to B in A is to declare a pointer.
Then it works to put a “forward” declaration of B at the top
of A.hpp, for example:

class B;

class A { B* bp; ... };

2. If a function defined in A references symbols of B, then the
definition of the function must be moved outside the class and
placed where it will be read after B has been read in, e.g., in
the A.cpp file.

3. If the function needs to be inline, this is still possible, but it’s
much trickier getting the inline function definition in the right
place.

CPSC 427, Lecture 14, October 22, 2018 8/15

Outline Circularity Modeling

Modeling the Think-A-Dot Machine

CPSC 427, Lecture 14, October 22, 2018 9/15

Outline Circularity Modeling

Modeling Think-A-Dot

The ThinkADot class in PS3 illustrates the issues in keeping a
clean separation between the external model and the internal
implementation of the functionality of the model.

The external description of the machine identified the three holes
(A, B, C) into which a marble could be dropped, and the two
output holes (P, Q) from which the marble would come out of the
machine. It also included the 8 colored dots visible on the front of
the machine and their geometric relationships to the holes and the
dots.

The external actions that a user can perform on a real
Think-A-Dot machine are to drop a ball in one of the input holes
and observe how the dots change and where the ball comes out,
and to tip the machine to one side or the other.

CPSC 427, Lecture 14, October 22, 2018 10/15

Outline Circularity Modeling

ThinkADot.hpp

The public interface in the ThinkADot class is intended to model
the externally visible parts of a ThinkADot.

The private part of the interface is to allow the faithful
implementation of the public functions. The flip-flop gates are
modeled as private data members.

CPSC 427, Lecture 14, October 22, 2018 11/15

Outline Circularity Modeling

Bridging the Gap

The place where the interface becomes tricky is in passing
parameters to the public functions. For example, public function
play(h) should be callable from outside of the class. It’s purpose
is to simulate the drop of a ball into one of the three starting input
holes h.

What should the type of h be? It’s natural to make it the number
of the gate that the ball first encounters. But the external user
doesn’t know how the gates are numbered. She only knows the
identities of the input holes.

CPSC 427, Lecture 14, October 22, 2018 12/15

Outline Circularity Modeling

A Solution

Class ThinkADot should have a public enum type InHole.
The parameter to play() should be an object of type InHole.

The first thing play() should do is to translate the parameter into
the private internal gate name that corresponds to the input hole.

The internal names are given by the private type

enum Place { T0, T1, T2, M0, M1, B0, B1, B2, LEXIT, REXIT };

Then InHole A corresponds to Place T0, B to T1, and C to T2.

CPSC 427, Lecture 14, October 22, 2018 13/15

Outline Circularity Modeling

Implementing the translation
A simple switch statement is sufficient to carry out the translation:

play(InHole h) {

Place pl;

switch (h) {

case A:

pl = T0;

break;

case B:

pl = T1;

break;

case C:

pl = T2;

break;

}

...

CPSC 427, Lecture 14, October 22, 2018 14/15

Outline Circularity Modeling

Output translation

Similar remarks apply to the translation from the internal
representation of the two output channels LEXIT and REXIT to the
external representation given by the public enum type

enum OutHole { P, Q };

play() returns a value of type OutHole, so its complete prototype
is OutHole play(InHole h);

CPSC 427, Lecture 14, October 22, 2018 15/15

	Handling Circularly Dependent Classes
	Modeling the Think-A-Dot Machine

