
Outline Polymorphic Derivation Uses of Polymorphism Standard Library

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Preview Lecture 15
October 24, 2018

CPSC 427, Preview Lecture 15, October 24, 2018 1/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Polymorphic Derivation

Uses of Polymorphism

Introduction to the
C++ Standard Library

CPSC 427, Preview Lecture 15, October 24, 2018 2/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Polymorphic Derivation

CPSC 427, Preview Lecture 15, October 24, 2018 3/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Some uses for derived classes.

I Code reuse. A base class can contain one copy of code that is
be used by several derived variants through inheritance.

I Modularity. The functionality provided by a base class can be
extended in a derived class. Example: BSquare extends
Square by adding board coordinates and clusters.

I Generic programming and isolation. A simulation such as PS4
might want to use different random number implementations,
e.g., one using random() and another reading numbers from
a file.

I Polymorphic collections. A company has different kinds of
employees with different rules for calculating their pay, each
represented by a derived class with its own calculatePay

function appropriate to that kind of employee.

CPSC 427, Preview Lecture 15, October 24, 2018 4/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Type Hierarchies

Consider following simple type hierarchy:

class B { public: int f(); ... };

class U : B { int f(); ... };

class V : B { int f(); ... };

We have a base class B and derived classes U and V.
A different method f() is defined in each.

Relationships: A U is a B (and more). A V is a B (and more).

A U can be used wherever a B is expected.

Example: Definition f(B& x) ... ; call U z; f(z);

Inside of f(), only the B-part of z is visible. This is called slicing.

CPSC 427, Preview Lecture 15, October 24, 2018 5/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Pointers and slicing

Declare B* bp; U* up = new U; V* vp = new V.

Can write bp = up; or bp = vp;.

Why does this make sense?

I *up has an embedded instance of B.

I *vp has an embedded instance of B.

If bp = up, then bp points to the embedded B-instance of object
*up. The rest of *up is inaccessible because of object slicing.

CPSC 427, Preview Lecture 15, October 24, 2018 6/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Ordinary derivation

In our previous example

class B { public: int f(); ... };

class U : B { int f(); ... };

class V : B { int f(); ... };

B* bp;

bp can point to objects of type B, type U, or type V.

Want bp->f() to refer to U::f() if bp points to a U object.
Want bp->f() to refer to V::f() if bp points to a V object.

However, with ordinary derivation, bp->f() always refers to
B::f().

CPSC 427, Preview Lecture 15, October 24, 2018 7/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Polymorphic derivation

The keyword virtual allows for polymorphic derivation.

class B { public: virtual int f(); ... };

class U : B { virtual int f(); ... };

class V : B { virtual int f(); ... };

B* bp;

A virtual function is dispatched at run time to the class of the
actual object.

bp->f() refers to U::f() if bp points to a U.
bp->f() refers to V::f() if bp points to a V.
bp->f() refers to B::f() if bp points to a B.

Here, the type refers to the allocation type.

CPSC 427, Preview Lecture 15, October 24, 2018 8/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Unions and type tags

We can regard bp as a pointer to the union of types B, U and V.

To know which of B::f(), U::f() or V::f() to use for the call
bp->f() requires runtime type tags.

If a class has virtual functions, the compiler adds a type tag field
to each object.
This takes space at run time.

The compiler also generates a vtable to use in dispatching calls on
virtual functions.

CPSC 427, Preview Lecture 15, October 24, 2018 9/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Virtual destructors

Consider delete bp;, where bp points to a U but has type B*.

The U destructor will not be called unless destructor B::~B() is
declared to be virtual.

Note: The base class destructor is always called, whether or not it
is virtual.

In this way, destructors are different from other member methods.

Conclusion: If a derived class has a non-empty destructor, the base
class destructor should be declared virtual.

CPSC 427, Preview Lecture 15, October 24, 2018 10/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Uses of Polymorphism

CPSC 427, Preview Lecture 15, October 24, 2018 11/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Uses of polymorphism

Some uses of polymorphism:

I To define an extensible set of representations for a class.

I To allow containers to store mixtures of different but related
types of objects.

I To support run-time variability of within a restricted set of
related types.

CPSC 427, Preview Lecture 15, October 24, 2018 12/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Multiple representations

Might want different representations for an object.

Example: A point in the plane can be represented by either
Cartesian or Polar coordinates.

A Point base class can provide abstract operations on points.
E.g., virtual int quadrant() const returns the quadrant of
*this.

For Cartesian coordinates, quadrant is determined by the signs of
the x and y coordinates of the point.
For polar coordinates, quadrant is determined by the angle θ.

Both Cartesian and Polar derived classes should contain a
method for int quadrant() const.

CPSC 427, Preview Lecture 15, October 24, 2018 13/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Heterogeneous containers

One might wish to have a stack of Point objects.

The element type of the stack would be Point*.

The actual values would have type either Cartesian* or Polar*.

The automatically generated type tags and dynamic dispatching
obviates the need to cast the result of pop() to the correct type.

Example:

Stack st; Point* p;

p = st.pop(); // no need to cast result
p->quadrant(); // automatic dispatch

CPSC 427, Preview Lecture 15, October 24, 2018 14/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Uses of polymorphism: Run-time variability

Two types are closely related; differ only slightly.

Example: Company has several different kinds of employees.

I Employee base class has a large and complicated payroll
function.

I Payroll is same for all kinds of employees except for a function
pay() that computes the actual weekly pay.

I Each employee kind has its own pay() function.

I Big payroll function is in base class.

I It calls pay() to get the actual pay for this Employee.

CPSC 427, Preview Lecture 15, October 24, 2018 15/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Pure virtual functions

Suppose we don’t want B::f() and we never create instances of
the base class B.
Rather, we want every derived class to provide a definition for f().
We make B::f() into a pure virtual function by writing =0.

class B { public: virtual int f()=0; ... };

class U : B { virtual int f(); ... };

class V : B { virtual int f(); ... };

B* bp;

A pure virtual function is sometimes called a promise.
It tells the compiler that a construct like bp->f() is legal.
The compiler requires every derived class to contain a method f().

CPSC 427, Preview Lecture 15, October 24, 2018 16/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Abstract classes

An abstract class is a class with one or more pure virtual functions.

An abstract class cannot be instantiated. It can only be used as
the base for another class.

The destructor can never be a pure virtual function but will
generally be virtual.

A pure abstract class is one where all member functions are pure
virtual (except for the destructor) and there are no data members,

Pure abstract classes define an interface à la Java.

An interface allows user-supplied code to integrate into a large
system.

CPSC 427, Preview Lecture 15, October 24, 2018 17/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Introduction to the

C++ Standard Library

CPSC 427, Preview Lecture 15, October 24, 2018 18/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

A bit of history

C++ standardization.

I C++ standardization began in 1989.

I ISO and ANSI standards were issued in 1998, nearly a decade
later.

I The standard covers both the C++ language and the standard
library (everything in namespace std).

I The standardization process continues as the language evolves
and new features are added.

The standard library was derived from several different sources.

STL (Standard Template Library) portion of the C++ standard was
derived from an earlier STL produced by Silicon Graphics (SGI).

CPSC 427, Preview Lecture 15, October 24, 2018 19/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Some useful classes

Here are some useful classes, some of which you have already seen:

I string – a character string designed to act as much as
possible like the primitive data types such as int and double.

I iostream, ifstream, ofstream — buffered reading and
writing of character streams.

I istringstream – permits input from an in-memory
string-like object.

I vector<T> – creates a growable array of objects of type T,
where T can be any type.

CPSC 427, Preview Lecture 15, October 24, 2018 20/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

Class stringstream

A stringstream object (in the default case) acts like an ostream

object.

It can be used just like you would use cout.

The characters go into an internal buffer rather than to a file or
device.

The buffer can be retrieved as a string using the str() member
function.

CPSC 427, Preview Lecture 15, October 24, 2018 21/22

Outline Polymorphic Derivation Uses of Polymorphism Standard Library

stringstream example

Example: Creating a label from an integer.

#include <sstream>

...

int examScore=94;

stringstream ss;

string label;

ss << "Score=" << examScore;

label = ss.str();

cout << label << endl;

This prints Score=94.

CPSC 427, Preview Lecture 15, October 24, 2018 22/22

	Polymorphic Derivation
	Uses of Polymorphism
	Introduction to the C++ Standard Library

