
Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 16
October 29, 2018

CPSC 427, Lecture 16, October 29, 2018 1/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Remarks on Upcoming Assignment PS5

Remarks on PS4-Consensus

Standard Template Class vector<T>

CPSC 427, Lecture 16, October 29, 2018 2/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Remarks on Upcoming Assignment PS5

CPSC 427, Lecture 16, October 29, 2018 3/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Two types of agents

PS4 defined two kinds of agents, Fickle and Follow the Crowd, but
it only implemented Fickle agents.

PS5 allows mixed populations of both kinds of agents.

We do this using polymorphic derivation, introduced in lecture 15.

CPSC 427, Lecture 16, October 29, 2018 4/17

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/ln15.pdf

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

The polymorphic agent class

Agent will become a pure abstract base class.

Fickle and Crowd will be derived from Agent.

Agent* pointers will be stored in the agent roster vector. This will
allow a mixed population of Fickle and Crowd agents.

Other changes will be made as needed to describe the new
more-complicated population of agents.

CPSC 427, Lecture 16, October 29, 2018 5/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Remarks on PS4-Consensus

CPSC 427, Lecture 16, October 29, 2018 6/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Array versus vector

Q: Should we use an array or a vector to store the list of agents?

A: Use an array as a dynamic extension of the Simulator class.

I It’s what we’ve talked about in class. The PS is to give you
practice. (See lecture 12, slide 6.)

I It’s slightly more efficient.

I You don’t need most of the features offered by vector<>.
Keep it simple when possible.

CPSC 427, Lecture 16, October 29, 2018 7/17

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/ln12.pdf

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Composition vs. aggregation

Q: Why can’t I just declare my agent array inside the class using
Agent ag[numAgents];

A1: This only works if the value of numAgents is known and fixed
at compile time. In PS4, it is not known until run time.

A2: Every type has a fixed storage size assigned by the compiler.
Composed data members likewise must have fixed size at compile
time. Aggregation is the way to model variable-sized real-world
objects using C++.

CPSC 427, Lecture 16, October 29, 2018 8/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Managing a dynamic extension

Q: How do I create and initialize an array ag of Agent as a
dynamic extension of Simulator?

A: Declare a private Agent pointer in Simulator.
Initialize it in the Simulator constructor.
One way uses ctor ag(new Agent[numAgets]).

Q: How do I delete the dynamic extension when I’m done with it?

A: Use the destructor ~Simulator() { delete[] ag; }.

CPSC 427, Lecture 16, October 29, 2018 9/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Initializing a dynamic extension

Q: How are the agents initialized when I do
new Agent[numAgents]?

A: By the agent’s default constructor, which is called automatically
for each agent in the array.

Q: I want them initialized using the Agent(int) constructor. How
can I do this?

A: For each agent k, do ag[k] = Agent(v), where the value of v
is the desired initial choice for k. This uses move assignment.

Q: Why not just set the agent’s choice to the value of v?

A: This would require a setter or other mechanism that violates the
privacy of the agent’s choice.

CPSC 427, Lecture 16, October 29, 2018 10/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Matching sample.out

Q: Your sample.out lacks the banner and by messages. Aren’t we
supposed to use them in every program?

A: Yes, you are. Unfortunately, PS4 is a bit inconsistent. It says
you should use banner() and bye() as usual, both of which write
to cout. It also strongly implies that only a single line of numbers
should be written to cout, and my sample.out reinforces that
idea.

Q: What should we do then?
A: Comment out banner() and bye().

Q: Sample output has extra spaces. Do we need to match that?
A: No.

CPSC 427, Lecture 16, October 29, 2018 11/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Running the sample.in script

Q: Your code sh -c sample.in > sample.out doesn’t work for
me. Why?

A1: sample.in needs to be executable by you. Use chmod to fix
the permissions.

A2: It won’t recognize either sample.in nor your consensus
executable unless “.” is in your search path.

CPSC 427, Lecture 16, October 29, 2018 12/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Search path

Q: What is my search path?

A: This is a list of directories to search when looking for a
requested command. It is a colon-separated list of directories.

Q: Where is it?

It’s stored in the environment variable PATH. You can see it with
echo $PATH.

Q: How can I put “.” in my search path?

A1: Modify your bash startup file .bash profile where it sets
PATH.

A2: You can temporarily add it by typing PATH=.:$PATH .

CPSC 427, Lecture 16, October 29, 2018 13/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Standard Template Class vector<T>

CPSC 427, Lecture 16, October 29, 2018 14/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

vector

vector<T> myvec is something like the C array T myvec[].

The element type T can be any primitive, object, or pointer type.

One big difference is that a vector starts empty (in the default
case) and it grows as elements are appended to the end.

Useful functions:

I myvec.push back(item) appends item to the end.

I myvec.size() returns the number of objects in myvec

I myvec[k] returns the object in myvec with index k (assuming
it exists.) Indices run from 0 to size()-1.

CPSC 427, Lecture 16, October 29, 2018 15/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

Other operations on vectors

Other operations include creating an empty vector, inserting,
deleting, and copying elements, scanning through the vector, and
so forth.

Liberal use is made of operator definitions to make vectors behave
as much like other C++ objects as possible.

Vectors implement value semantics, meaning type T objects are
moved freely within the vectors.

This implies that class T should support move constructors and
assignment.

Alternatively, one can store pointers in the vector instead.

CPSC 427, Lecture 16, October 29, 2018 16/17

Outline Remarks on Upcoming Assignment PS5 Remarks on PS4-Consensus Standard Template Class vector<T>

vector examples

You must #include <vector>.

Elements can be accessed using standard subscript notion.

Inserting at the beginning or middle of a vector takes time O(n).

Example:
vector<int> tbl(10); // creates length 10 vector of int

tbl[5] = 7; // stores 7 in slot #5

cout << tbl[5]; // prints 7

tbl[10] = 4; // illegal, but not checked!!!

cout << tbl.at(5); // prints 7

tbl.at(10) = 4; // illegal and throws an exception

tbl.push_back(4); // creates tbl[10] and stores 4

cout << tbl.at(10); // prints 4

CPSC 427, Lecture 16, October 29, 2018 17/17

	Remarks on Upcoming Assignment PS5
	Remarks on PS4-Consensus
	Standard Template Class blue vector<T>

