
Outline Overview of PS5 Move Demo Bells and Whistles

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 17
October 31, 2018

CPSC 427, Lecture 17, October 31, 2018 1/21

Outline Overview of PS5 Move Demo Bells and Whistles

Overview of PS5

Move Demo

Bells and Whistles

CPSC 427, Lecture 17, October 31, 2018 2/21

Outline Overview of PS5 Move Demo Bells and Whistles

Overview of PS5

CPSC 427, Lecture 17, October 31, 2018 3/21

Outline Overview of PS5 Move Demo Bells and Whistles

Challenges

PS5 is to add a second agent type to the simulated population.
This creates several challenges.

1. Make Agent a pure abstract base class for new derived classes
Fickle and Crowd.

2. Create a Population class to manage populations with two
kinds of agents as well as two possible initial values.

3. Remove population code from Simulator, leaving only the
code to simulate random communication steps until consensus
is reached.

4. Rework main.cpp to accommodate the above changes.

CPSC 427, Lecture 17, October 31, 2018 4/21

Outline Overview of PS5 Move Demo Bells and Whistles

Experiments and Observations

Once your code is running, use it to get some understanding for
how the number of steps to reach consensus depends on the
parameters.

Particularly interesting is to see the effect of adding a small
percentage of Crowd agents to a population consisting primarily of
Fickle agents. The difference should become obvious in a
population of size 10,000 or so.

CPSC 427, Lecture 17, October 31, 2018 5/21

Outline Overview of PS5 Move Demo Bells and Whistles

Move Demo

CPSC 427, Lecture 17, October 31, 2018 6/21

Outline Overview of PS5 Move Demo Bells and Whistles

Special member functions demo

Recall the six so-called special member functions:

I Default constructor.
I Destructor.
I Copy constructor.
I Copy assignment.
I Move constructor.
I Move assignment.

These are automatically defined if you do nothing, but defining
some of them inhibit the automatic definition of others.

Automatic definitions can be enabled by explicitly writing
=default or disabled by writing =delete.

CPSC 427, Lecture 17, October 31, 2018 7/21

Outline Overview of PS5 Move Demo Bells and Whistles

Special member functions demo

The demo 17-SpecialMbrFcns defines all six special functions and
shows how they can be invoked.

It defines a class T with two private data members: an integer x
and an integer pointer a.

class T {

private:

int x;

int* a = new int[3];

public:

...

};

CPSC 427, Lecture 17, October 31, 2018 8/21

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/17-SpecialMbrFcns/

Outline Overview of PS5 Move Demo Bells and Whistles

Default constructor and destructor

// Default constructor

T() : x(0), a(nullptr) {

cout << " Null constructor" << endl;

}

This uses a ctor to initialize the two data members to 0 and
nullptr, respectively. It then announces itself.

// Destructor

~T() {

delete[] a;

cout << " Destructor" << endl;

}

This deleted the dynamic extension a and announces itself.

CPSC 427, Lecture 17, October 31, 2018 9/21

Outline Overview of PS5 Move Demo Bells and Whistles

Additional constructor

// Constructor from an int

explicit T(int x) : x(x) {

cout << " Explicit constructor T("

<< x << ")" << endl;

}

This initializes x using a ctor. a is initialized using the initializer
= new int[3] defined in the class. The keyword explicit

inhibits it from being used implicitly to convert an int to a T.

CPSC 427, Lecture 17, October 31, 2018 10/21

Outline Overview of PS5 Move Demo Bells and Whistles

Copy constructor and move constructor

// Copy constructor

T(const T& rhs) : x(rhs.x), a(rhs.a) {

cout << " Copy constructor" << endl;

}

Uses ctor to initialize x and a from corresponding members of rhs.

// Move constructor

T(T&& rhs) : x(rhs.x), a(rhs.a) {

if (this != &rhs) rhs.a = nullptr;

cout << " Move constructor" << endl;

}

Same as copy constructor but prevents automatic deletion of the
dynamic extension in rhs by setting a to nullptr.

CPSC 427, Lecture 17, October 31, 2018 11/21

Outline Overview of PS5 Move Demo Bells and Whistles

Copy assignment

// Copy assignment

T& operator=(const T& rhs) {

x = rhs.x;

a = rhs.a;

cout << " Copy assignment" << endl;

return *this;

}

Uses operator=() to assign x and a from the corresponding
members of rhs. Returns a reference to the left-hand side in
keeping with other assignment operators.

Why wasn’t a ctor used here?

CPSC 427, Lecture 17, October 31, 2018 12/21

Outline Overview of PS5 Move Demo Bells and Whistles

Move assignment

T& operator=(T&& rhs) {

if (this != &rhs) {

x = rhs.x;

delete[] a;

a = rhs.a;

rhs.a = nullptr;

}

cout << " Move assignment" << endl;

return *this;

}

Similar to copy assignment, but:

1. What is the if-statement for?

2. Why is a deleted before the move?

3. Why is rhs.a set to nullptr after the move?

CPSC 427, Lecture 17, October 31, 2018 13/21

Outline Overview of PS5 Move Demo Bells and Whistles

Invoking the special functions

The main program in demo 17-SpecialMbrFcns prints a C++
statement along with output showing what happened.

[T a;]

Null constructor

a=(0, 0)

[T b(17);]

Explicit constructor T(17)

b=(17, 0x1e94030)

[T d(move(b));]

Move constructor

d=(17, 0x1e94030), b=(17, 0)

CPSC 427, Lecture 17, October 31, 2018 14/21

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/17-SpecialMbrFcns/

Outline Overview of PS5 Move Demo Bells and Whistles

Invoking the special functions

[T e;]

Null constructor

[T f;]

Null constructor

[f = move(d);]

Move assignment

f=(17, 0x1e94030), d=(17, 0)

[T g = T(41);]

Explicit constructor T(41)

g=(41, 0x1e94050)

CPSC 427, Lecture 17, October 31, 2018 15/21

Outline Overview of PS5 Move Demo Bells and Whistles

Invoking the special functions
[T h;]

Null constructor

[h = T(89);]

Explicit constructor T(89)

Move assignment

Destructor

h=(89, 0x1e94070)

Destructor

Destructor

Destructor

Destructor

Destructor

Destructor

Destructor

CPSC 427, Lecture 17, October 31, 2018 16/21

Outline Overview of PS5 Move Demo Bells and Whistles

Bells and Whistles

CPSC 427, Lecture 17, October 31, 2018 17/21

Outline Overview of PS5 Move Demo Bells and Whistles

Optional parameters

The same name can be used to name several different member
functions if the signatures (types and/or number of parameters)
are diffent. This is called overloading.

Optional parameters are a shorthand way to declare overloading.

Example
int myfun(double x, int n=1) { ... }
This in effect declares and defines two methods:
int myfun(double x) {int n=1; ...}
int myfun(double x, int n) {...}

The body of the definition of both is the same.
If called with one argument, the second parameter is set to 1.

CPSC 427, Lecture 17, October 31, 2018 18/21

Outline Overview of PS5 Move Demo Bells and Whistles

const

const declares a variable (L-value) to be readonly.

const int x;

int y;

const int* p;

int* q;

p = &x; // okay

p = &y; // okay

q = &x; // not okay -- discards const

q = &y; // okay

CPSC 427, Lecture 17, October 31, 2018 19/21

Outline Overview of PS5 Move Demo Bells and Whistles

const implicit argument

const should be used for member functions that do not change
data members.

class MyPack {

private:

int count;

public:

int size() const { return count; }

...

};

CPSC 427, Lecture 17, October 31, 2018 20/21

Outline Overview of PS5 Move Demo Bells and Whistles

Operator extensions

Operators are shorthand for functions.

Example: <= refers to the function operator <=().

Operators can be overloaded just like functions.

class MyObj {

int count;

...

bool operator <=(MyObj& other) const {

return count <= other.count; }

};

Now can write
if (a <= b) ...

where a and b are of type MyObj.

CPSC 427, Lecture 17, October 31, 2018 21/21

	Overview of PS5
	Move Demo
	Bells and Whistles

