
Outline Class Virtue Linear Functions Revisited Op Ext

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 18
November 5, 2018

CPSC 427, Lecture 18, November 5, 2018 1/29

Outline Class Virtue Linear Functions Revisited Op Ext

The Many Uses of Classes

Virtue Demo

Linear Data Structure Demo

Functions Revisited

Operator Extensions

CPSC 427, Lecture 18, November 5, 2018 2/29

Outline Class Virtue Linear Functions Revisited Op Ext

The Many Uses of Classes

CPSC 427, Lecture 18, November 5, 2018 3/29

Outline Class Virtue Linear Functions Revisited Op Ext

What is a class?

I A collection of things that belong together.

I A struct with associated functions.

I A way to encapsulate behavior: public interface, private
implementation.

I A way to protect data integrity, providing world with functions
that provide a read-only view of the data.

I A data type from which objects (instances) can be formed.
We say the instances belong to the class.

I A way to organize and automate allocation, initialization, and
deallocation of storage.

I A way to break a complex problem into manageable,
semi-independent pieces, each with a defined interface.

I A reusable module.

CPSC 427, Lecture 18, November 5, 2018 4/29

Outline Class Virtue Linear Functions Revisited Op Ext

Virtue Demo

CPSC 427, Lecture 18, November 5, 2018 5/29

Outline Class Virtue Linear Functions Revisited Op Ext

Virtual virtue

class Basic {

public:

virtual void print(){cout <<"I am basic. "; }

};

class Virtue : public Basic {

public:

virtual void print(){cout <<"I have virtue. "; }

};

class Question : public Virtue {

public:

void print(){cout <<"I am questing. "; }

};

CPSC 427, Lecture 18, November 5, 2018 6/29

Outline Class Virtue Linear Functions Revisited Op Ext

Main virtue

What does this do?

int main (void) {

cout << "Searching for Virtue\n";

Basic* array[3];

array[0] = new Basic();

array[1] = new Virtue();

array[2] = new Question();

array[0]->print();

array[1]->print();

array[2]->print();

return 0;

}

See demo 18a-Virtue!

CPSC 427, Lecture 18, November 5, 2018 7/29

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/18a-Virtue

Outline Class Virtue Linear Functions Revisited Op Ext

Linear Data Structure Demo

CPSC 427, Lecture 18, November 5, 2018 8/29

Outline Class Virtue Linear Functions Revisited Op Ext

Using polymorphism

Similar data structures:

I Linked list implementation of a stack of items.

I Linked list implementation of a queue of items.

Both support a common interface:

I void put(Item*)

I Item* pop()

I Item* peek()

I ostream& print(ostream&)

They differ only in where put() places a new item.

The demo 18b-Virtual (from Chapter 15 of textbook) shows
how to exploit this commonality.

CPSC 427, Lecture 18, November 5, 2018 9/29

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/18b-Virtual

Outline Class Virtue Linear Functions Revisited Op Ext

Interface file

We define this common interface by the pure abstract class.

class Container {

public:

virtual ~Container() {}

virtual void put(Item*) =0;

virtual Item* pop() =0;

virtual Item* peek() =0;

virtual ostream& print(ostream&) =0;

};

Any class derived from it is required to implement these four
functions.

Stack and Queue could be derived directly from Container.
Instead we exploit additional commonality between them.

CPSC 427, Lecture 18, November 5, 2018 10/29

Outline Class Virtue Linear Functions Revisited Op Ext

Class Linear
class Linear: public Container {

protected: Cell* head;

private: Cell* here; Cell* prior;

protected: Linear();

virtual ~Linear ();

void reset();

bool end() const;

void operator ++();

virtual void insert(Cell* cp);

virtual void focus() = 0;

Cell* remove();

void setPrior(Cell* cp);

public: void put(Item * ep);

Item* pop();

Item* peek();

virtual ostream& print(ostream& out);

};

CPSC 427, Lecture 18, November 5, 2018 11/29

Outline Class Virtue Linear Functions Revisited Op Ext

Example: Stack

class Stack : public Linear {

public:

Stack(){}

~Stack(){}

void insert(Cell* cp) { reset(); Linear::insert(cp); }

void focus(){ reset(); }

ostream& print(ostream& out){

out << " The stack contains:\n";

return Linear::print(out);

}

};

CPSC 427, Lecture 18, November 5, 2018 12/29

Outline Class Virtue Linear Functions Revisited Op Ext

Example: Queue

class Queue : public Linear {

private:

Cell* tail;

public:

Queue() { tail = head; }

~Queue(){}

void insert(Cell* cp) {

setPrior(tail); Linear::insert(cp); tail=cp; }

void focus(){ reset(); }

};

CPSC 427, Lecture 18, November 5, 2018 13/29

Outline Class Virtue Linear Functions Revisited Op Ext

Class structure

Class structure.

I Container specifies the common interface.

I Linear contains the bulk of the code. It is derived from
Container.

I Stack and Queue are both derived from Linear.

I Cell is a “helper” class that is aggregated by Linear.

I Item is the base type for the container elements. It is defined
by a typedef here but would normally be specified by a
template.

I Exam is a non-trivial item type used by main to illustrate
stacks and queues.

CPSC 427, Lecture 18, November 5, 2018 14/29

Outline Class Virtue Linear Functions Revisited Op Ext

C++ features

The demo illustrates several C++ features.

1. [Container] Pure abstract class.

2. [Cell] Friend functions.

3. [Cell] Printing a pointer in hex.

4. [Cell] Operator extension operator Item*().

5. [Linear] Virtual functions and polymorphism.

6. [Linear] Scanner pairs (prior, here) for traversing a linked list.

7. [Linear] Operator extension operator ++()

8. [Linear, Exam] Use of private, protected, and public

in same class.

CPSC 427, Lecture 18, November 5, 2018 15/29

Outline Class Virtue Linear Functions Revisited Op Ext

#include structure

Getting #include’s in the
right order.

Problem: Making sure
compiler sees symbol
definitions before they are
used.

Partial solution: Make de-
pendency graph. If not
cyclic, each .hpp file in-
cludes the .hpp files just
above it.

exam.hpp

item.hpp

container.hpp

linear.hpp

queue.hppstack.hpp

cell.hpp

CPSC 427, Lecture 18, November 5, 2018 16/29

Outline Class Virtue Linear Functions Revisited Op Ext

Functions Revisited

CPSC 427, Lecture 18, November 5, 2018 17/29

Outline Class Virtue Linear Functions Revisited Op Ext

Global vs. member functions
A global function is one that takes zero or more explicit arguments.
Example: f(a, b) has two explicit arguments a and b.

A member function is one that takes an implicit argument along
with zero or more explicit arguments.
Example: c.g(a, b) has two explicit arguments a and b and
implicit argument c.
Example: d->g(a, b) has two explicit arguments a and b and
implicit argument *d.

Note that an omitted implicit argument defaults to (*this),
which must make sense in the context.
Example: If g is a member function of class MyClass, then within
MyClass, the call g(a, b) defaults to (*this).g(a,b) (or
equivalently this->g(a,b)).

CPSC 427, Lecture 18, November 5, 2018 18/29

Outline Class Virtue Linear Functions Revisited Op Ext

Defining global functions

There are three ways to define a global function.

1. Place the declaration at the top level of your code, outside of
any class declarations. Most functions in C are of this kind.

2. Place the declaration inside a class definition, prefixed by the
keyword static. This creates a global function whose name
is qualified by the class name. It’s visibility is controlled by the
visibility keywords public, protected, and private.

3. Place the declaration at the top level and prefix its name by
static. This creates a C-style static function whose name is
visible only within the one compile module. Classes and static
member functions provide a better way to provide modularity
and control name visibility, so this should not be used in C++.
It is retained only for compatibility with C.

CPSC 427, Lecture 18, November 5, 2018 19/29

Outline Class Virtue Linear Functions Revisited Op Ext

Defining member functions

Placing a function declaration inside a class definition creates a
member function.

Its definition is considered to be “inside” the class, whether or not
it appears in the class or as an out-of-line function in a .cpp file.

Example:

class MyClass {

protected:

double g(const int* a, unsigned b) const;

};

This defines a member function g with explicit parameters of type
const int* and unsigned and implicit parameter of type const

MyClass&.

CPSC 427, Lecture 18, November 5, 2018 20/29

Outline Class Virtue Linear Functions Revisited Op Ext

Operator Extensions

CPSC 427, Lecture 18, November 5, 2018 21/29

Outline Class Virtue Linear Functions Revisited Op Ext

Operator syntax

We have seen the operator keyword used to extend the meaning
of operators.

Each binary operator ⊕ corresponds to a function whose name is
operator⊕, but the operator syntax a⊕ b does not tell us whether
to look for a global or a member function. Possibile meanings:

I Global function: operator⊕(a, b).

I Member function: a.operator⊕(b).

It could mean either, and the compiler sees if either one matches.
If both match, it reports an ambiguity.

CPSC 427, Lecture 18, November 5, 2018 22/29

Outline Class Virtue Linear Functions Revisited Op Ext

Operator extension as member function
Here’s a sketch for how one might go about defining a complex
number class.

class Complex {

private:

double re; // real part

double im; // imaginary part

public:

Complex(double re, double im) : re(re), im(im) {}

Complex operator+(const Complex& b) const {

return Complex(re+b.re, im+b.im);

}

Complex operator*(const Complex& b) const {

return Complex(re*b.re - im*b.im, re*b.im + im*b.re);

}

};

CPSC 427, Lecture 18, November 5, 2018 23/29

Outline Class Virtue Linear Functions Revisited Op Ext

Operator extension as global function

We have seen one important example of a global operator
extension when we define the output operator on a new class.

Given the choice, it is preferable to use a member operator
function.

We use a global form of operator<< because the left hand
operator is of predefined type ostream, and we can’t add member
functions to that class.

CPSC 427, Lecture 18, November 5, 2018 24/29

Outline Class Virtue Linear Functions Revisited Op Ext

Prefix unary operator extensions

C++ has a number of prefix unary operators
*, -, ++, new, ...

The corresponding operator functions are
operator*(), operator-(), operator++(),

operator new(), ...

CPSC 427, Lecture 18, November 5, 2018 25/29

Outline Class Virtue Linear Functions Revisited Op Ext

Postfix unary operator extensions

C++ also has two postfix unary operators
++, --.

The corresponding operator functions are
operator++(int), operator--(int).

This is a special case that breaks all the normal rules, but it works
since ++ and -- are not binary operators. The dummy int

parameter should be ignored.

CPSC 427, Lecture 18, November 5, 2018 26/29

Outline Class Virtue Linear Functions Revisited Op Ext

Ambiguous operator extensions

class Bar {

public:

int operator+(int y) { return y+2; }

};

int operator+(Bar& b, int y) { return y+3; }

int main() {

Bar b;

cout << b+5 << endl;

}

Compiler reports error: ambiguous overload for

’operator+’ in ’b + 5’.

CPSC 427, Lecture 18, November 5, 2018 27/29

Outline Class Virtue Linear Functions Revisited Op Ext

Summary: How to define operator extensions

Unary operator op is shorthand for operator op ().

Binary operator op is shorthand for operator op (T arg2).

Some exceptions: Pre-increment and post-increment.

To define meaning of ++x on type T, define operator ++().

To define meaning of x++ on type T, define operator ++(int) (a
function of one argument). The argument is ignored.

CPSC 427, Lecture 18, November 5, 2018 28/29

Outline Class Virtue Linear Functions Revisited Op Ext

Special case operator extensions

Some special cases.

I Subscript: T& operator [](S index).

I Arrow: X* operator ->() returns pointer to a class X to
which the selector is then applied.

I Function call; T2 operator ()(arg list).

I Cast: operator T() defines a cast to type T.

Can also extend the new, delete, and , (comma) operators.

CPSC 427, Lecture 18, November 5, 2018 29/29

	The Many Uses of Classes
	Virtue Demo
	Linear Data Structure Demo
	Functions Revisited
	Operator Extensions

