
Outline Exceptions Throwing Catching

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 19
November 7, 2018

CPSC 427, Lecture 19, November 7, 2018 1/18

Outline Exceptions Throwing Catching

Exceptions

Thowing an Exception

Catching an Exception

CPSC 427, Lecture 19, November 7, 2018 2/18

Outline Exceptions Throwing Catching

Exceptions

CPSC 427, Lecture 19, November 7, 2018 3/18

Outline Exceptions Throwing Catching

Exceptions

An exception is an event that prevents normal continuation.

Exceptions may be due to program errors or data errors, but they
may also be due to external events:

I File not found.

I Insufficient permissions.

I Network failure.

I Read error.

I Out of memory error.

How to respond to different kinds of exceptions is
application-dependent.

CPSC 427, Lecture 19, November 7, 2018 4/18

Outline Exceptions Throwing Catching

Exception handling

When an exception occurs, a program has several options:

I Try again.

I Try something else.

I Give up.

Problem: Exceptions are often detected at a low level of the code.
Knowledge of how to respond resides at a higher level.

CPSC 427, Lecture 19, November 7, 2018 5/18

Outline Exceptions Throwing Catching

C-style solution using status returns

The C library functions generally report exceptions by returning
status values or error codes.

Advantages: How to handle exception is delegated to the caller.

Disadvantages:

I Every caller must handle every possible exception.

I Exception-handling code becomes intermingled with the
“normal” operation code, making program much more
difficult to comprehend.

CPSC 427, Lecture 19, November 7, 2018 6/18

Outline Exceptions Throwing Catching

C++ exception mechanism

C++ exception mechanism is a means for a low-level routine to
report an exception directly to a higher-level routine.

This separates exception-handling code from normal processing
code.

An exception is reported using the keyword throw.

An exception is handled in a catch block.

Each routine in the chain between the reporter and the handler is
exited cleanly, with all destructors called as expected.

CPSC 427, Lecture 19, November 7, 2018 7/18

Outline Exceptions Throwing Catching

Thowing an Exception

CPSC 427, Lecture 19, November 7, 2018 8/18

Outline Exceptions Throwing Catching

Throwing an exception (demo 19a-Exceptions)

throw is followed by an exception value.

Exceptions are usually objects of a user-defined exception type.

Example:
throw AgeError("Age can’t be negative");

Exception class definition:
class AgeError {

string msg;

public:

AgeError(string s) : msg(s) {}

ostream& printError(ostream& out) const { return out<< msg; }

};

CPSC 427, Lecture 19, November 7, 2018 9/18

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/19a-Exceptions

Outline Exceptions Throwing Catching

Catching an Exception

CPSC 427, Lecture 19, November 7, 2018 10/18

Outline Exceptions Throwing Catching

Catching an exception
A try region defines a section of code to be monitored for
exceptions.
Immediately following are catch blocks for handling the
exceptions.
try {

... //run some code

}

catch (AgeError& aerr) {

// report error

cout<< "Age error: ";

aerr.printError(cout)<< endl;

// ... recover or abort

}

The catch parameter should generally be a reference parameter as
in this example.

CPSC 427, Lecture 19, November 7, 2018 11/18

Outline Exceptions Throwing Catching

What kind of object should an exception throw?

catch filters the kinds of exceptions it will catch according to the
type of object thrown.

For this reason, each kind of exception should throw it’s own type
of object.

That way, an exception handler appropriate to that kind of
exception can catch it and process it appropriately.

While it may be tempting to throw a string that describes the error
condition, it is difficult to process such an object except by printing
it out and aborting (like Fatal()).

Properly used, exceptions are much more powerful than that.

CPSC 427, Lecture 19, November 7, 2018 12/18

Outline Exceptions Throwing Catching

Example: Stack template throws exception

It is an error to pop an empty stack.

We have given several sample stack implementations. Here’s what
they each do when attemption to pop an empty stack:

Demo Action on empty pop error
08-Brackets undefined (programmer must avoid)
19-Virtual/linear.cpp return nullptr

19b-Exceptions-stack throw exception

Demo 19b-Exceptions-stack gives one way to handle an empty
pop error using throw.

CPSC 427, Lecture 19, November 7, 2018 13/18

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/19b-Exceptions-stack

Outline Exceptions Throwing Catching

Polymorphic exception classes

A catch clause can catch polymorphic exception objects.

Demo 19c-Exceptions-cards‘w shows how this can be used to
provide finer error control.

The base exception class Bad has a virtual print function. Derived
from it are two classes BadSuit and BadSpot.

The catch clause catch (bad& bs) {...} will catch all three
kinds of errors: bad suit, bad spot, and bad both.

These are errors that can arise while reading a playing card from
the user.

CPSC 427, Lecture 19, November 7, 2018 14/18

https://zoo.cs.yale.edu/classes/cs427/2018f/handouts/19c-Exceptions-cards

Outline Exceptions Throwing Catching

Standard exception class

The standard C++ library provides a polymorphic base class
std::exception from which all exceptions thrown by components
of the C++ Standard library are derived.

These are:

exception description
bad alloc thrown by new on allocation failure
bad cast thrown by a failed dynamic cast

bad exception thrown when an exception type doesn’t
match any catch

bad typeid thrown by typeid

ios base::failure thrown by functions in the iostream

library

(from http://www.cplusplus.com/doc/tutorial/exceptions/)

CPSC 427, Lecture 19, November 7, 2018 15/18

http://www.cplusplus.com/doc/tutorial/exceptions/

Outline Exceptions Throwing Catching

Catching standard exceptions

Class std::exception contains a virtual function

const char* what() const;

that is overridden in each derived exception class to provide a
meaningful error message.

Because the base class is polymorphic, it is possible to write a
single catch handler that will catch all derived exception objects.

Example:
catch (exception& e)

{

cerr << "exception caught: " << e.what() << endl;

}

CPSC 427, Lecture 19, November 7, 2018 16/18

Outline Exceptions Throwing Catching

Deriving your own exception classes from std::exception
#include <iostream>

#include <exception>

using namespace std;

class myexception: public exception {

virtual const char* what() const throw()

{ return "My exception happened"; }

} myex; // declares class and instantiates it

int main () {

try {

throw myex;

}

catch (exception& e) {

cout << e.what() << endl;

}

return 0;

}

CPSC 427, Lecture 19, November 7, 2018 17/18

Outline Exceptions Throwing Catching

Multiple catch blocks

I Can have multiple catch blocks to catch different classes of
exceptions.

I They are tried in order, so the more specific should come
before the more general.

I Can have a “catch-all” block catch (...) that catches all
exceptions. (This should be placed last.)

Demo 19c-Exceptions-cards has an example of this as well.

CPSC 427, Lecture 19, November 7, 2018 18/18

	Exceptions
	Thowing an Exception
	Catching an Exception

