
Outline Rethrowing Uncaught Singleton Smart Pointer Demo

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 20
November 12, 2018

CPSC 427, Lecture 20, November 12, 2018 1/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Rethrowing Exceptions

Uncaught Exceptions

Singleton Design Pattern

Smart Pointer Demo

CPSC 427, Lecture 20, November 12, 2018 2/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Rethrowing Exceptions

CPSC 427, Lecture 20, November 12, 2018 3/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Rethrow

A catch block can do some processing and then optionally
rethrow the exception or throw a new exception.

I One exception can cause multiple catch blocks to execute.

I To rethrow the same exception, use throw; with no
argument.

I To throw a new exception, use throw as usual with an
argument.

CPSC 427, Lecture 20, November 12, 2018 4/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

A subtle fact about rethrow

Rethrowing the current exception is not the same as throwing an
exception with the same exception object.

throw e; always copies object e to special memory using the copy
constructor for e’s class.

throw; does not make another copy of the exception object but
instead uses the copy already in special memory.

This difference becomes apparent if the copy is not identical to the
original (possible for a custom copy constructor), or if the copy
constructor has side effects (such as printing output).

CPSC 427, Lecture 20, November 12, 2018 5/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Example of rethrowing an exception (demo 20a-Exceptions-rethrow)
1 #include <iostream>

2 using namespace std;

3 class MyException {

4 public:

5 MyException() {}

6 MyException(MyException& e) {

7 cout << "Copy constructor called\n"; }

8 ~MyException() {}

9 } myex; // declares class and instantiates it

10 int main () {

11 try {

12 try { throw myex; }

13 catch (MyException& e) {

14 cout << "Exception caught by inner catch\n"; throw; }

15 }

16 catch (MyException& err) {

17 cout << "Exception caught by outer catch\n";

18 }

19 return 0;

20 }

CPSC 427, Lecture 20, November 12, 2018 6/26

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/20a-Exceptions-rethrow

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Results

In the preceding example, the throw myex on line 12 causes a
copy, but the throw on line 14 does not.

This produces the following output:

Copy constructor called

Exception caught by inner catch

Exception caught by outer catch

CPSC 427, Lecture 20, November 12, 2018 7/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Uncaught Exceptions

CPSC 427, Lecture 20, November 12, 2018 8/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Uncaught exceptions: Ariane 5

Uncaught exceptions have led to spectacular disasters.

The European Space Agency’s Ariane 5 Flight 501 was destroyed
40 seconds after takeoff (June 4, 1996). The US$1 billion
prototype rocket self-destructed due to a bug in the on-board
guidance software. [Wikipedia]

This is not about a programming error.
It is about system-engineering and design failures.
The software did what it was designed to do and what it was
agreed that it should do.

CPSC 427, Lecture 20, November 12, 2018 9/26

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Uncaught exceptions: Ariane 5 (cont.)
Heres a summary of the events and its import for system
engineering:

I A decision was made to leave a program running after launch,
even though its results were not needed after launch.

I An overflow error happened in that calculation,

I An exception was thrown and, by design, was not caught.

I This caused the vehicle’s active and backup inertial reference
systems to shut down automatically.

As the result of the unanticipated failure mode and a diagnostic
message erroneously treated as data, the guidance system ordered
violent attitude correction. The ensuing disintegration of the
over-stressed vehicle triggered the pyrotechnic destruction of the
launcher and its payload.

CPSC 427, Lecture 20, November 12, 2018 10/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Termination

There are various conditions under which the exception-handling
mechanism can fail. Two such examples are:

I Exception not caught by any catch block.

I A destructor issues a throw during the stack-unwinding
process.

When this happens, the function terminate() is called, which by
default aborts the process.1

This is a bad thing in production code.

Conclusion: All exceptions should be caught and dealt with
explicitly.

1It’s behavior can be changed by the user.

CPSC 427, Lecture 20, November 12, 2018 11/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Singleton Design Pattern

CPSC 427, Lecture 20, November 12, 2018 12/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Unique IDs

Unique identifiers (UIDs) are familiar in many situations:
Appliance serial numbers, automobile VINs, social security
numbers, and so forth.

They are useful in programming as well. Whenever a class has
many instances, UIDs can help track objects from the time they
are created until their eventual deletion. This is especially helpful
when custody changes during the lifetime of the object.

UIDs are very helpful in identifying error comments during
debugging. They are also helpful when included in log files.

CPSC 427, Lecture 20, November 12, 2018 13/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

How to generate UIDs

A method for adding UIDs to class instances involves the following
steps:

1. Add a data member const unsigned uid to the class.

2. Add a static variable unsigned nextUID to the class.

3. Initialize nextUID to 0.

4. In every constructor, initialize uid to nextUID++.

Recall that static variables cannot be initialized within the class
but rather in a .cpp file.

CPSC 427, Lecture 20, November 12, 2018 14/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Drawbacks to the simple method

Drawbacks to the simple approach:

I It adds clutter to the class.

I It violates OO principles by mixing together the UID
generation process with whatever else the class is doing.

I It results in code replication if UIDs are being used in more
than one class.

CPSC 427, Lecture 20, November 12, 2018 15/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

A UID generator

What we want is a class Serial with a private data member
nextUID and a public function uidGen() that returns and updates
the next UID.

In order to call the function, we need a class instance uidGen of
Serial that initializes nextUID and supports the public function
uidGen(). Now, to generate a new serial number, simply call
uidGen.uidGen().

However, this solution has two problems:

1. How can one make the object uidGen available wherever
needed?

2. Where should Serial be instantiated?

CPSC 427, Lecture 20, November 12, 2018 16/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Singleton class

A singleton class solves both problems.

1. It has a static function that returns a pointer to the single
instantiation whenever it is called.

2. Initially there is no instantiation, so it creates and remembers
an instantation the first time it is called. It uses a private
static variable for this purpose.

CPSC 427, Lecture 20, November 12, 2018 17/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Functors

A functor is an object that acts like a function.

Let obj be a functor. Then one can write obj(), pretending that
obj is a function.

All that is needed to make this work is to define operator()

within the class.

For our UID generator, we define the behavior of obj to be the
same as for uidGen() discussed above.

CPSC 427, Lecture 20, November 12, 2018 18/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Serial.hpp

// Singleton class for generating unique ID’s

class Serial {

private:

static Serial* Sobj;

int nextUID=0;

Serial() =default;

public:

static Serial& uidGen() {

if (Sobj == nullptr) Sobj = new Serial;

return *Sobj;

}

const int operator()() { return nextUID++; }

};

CPSC 427, Lecture 20, November 12, 2018 19/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Serial.cpp

// Initialize Serializer static variable

Serial* Serial::Sobj = nullptr;

CPSC 427, Lecture 20, November 12, 2018 20/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Smart Pointer Demo

CPSC 427, Lecture 20, November 12, 2018 21/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Dangling pointers

Pointers can be used to permit object sharing from different
contexts.

One can have a single object of some type T with many pointers in
different contexts that all point to that object.

CPSC 427, Lecture 20, November 12, 2018 22/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Problems with shared objects

If the different contexts have different lifetimes, the problem is to
know when it is safe to delete the object.

It can be difficult to know when an object should be deleted.
Failure to delete an object will cause memory leaks.

If the object is deleted while there are still points pointing to it,
then those pointers become invalid. We call these dangling
pointers.

Failure to delete or premature deletion of objects are common
sources of errors in C++.

CPSC 427, Lecture 20, November 12, 2018 23/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Avoiding dangling pointers

There are several ways to avoid dangling pointers.

1. Have a top-level manager whose lifetime exceeds that of all of
the pointers take responsibility for deleting the objects.

2. Use a garbage collection. (This is java’s approach.)

3. Use reference counts. That is, keep track somehow of the
number of outstanding pointers to an object. When the last
pointer is deleted, then the object is deleted at that time.

CPSC 427, Lecture 20, November 12, 2018 24/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Modern C++ Smart Pointers

Modern C++ has three kinds of smart pointers. These are objects
that act very much like raw pointers, but they take responsibility
for managing the objects they point at and deleting them when
appropriate.

I shared ptr

I weak ptr

I unique ptr

We will discuss them later in the course, time permitting. For now,
we present a simplified version of shared pointer so that you can
see the basic mechanism that underlies all of the various kinds of
shared pointers.

CPSC 427, Lecture 20, November 12, 2018 25/26

Outline Rethrowing Uncaught Singleton Smart Pointer Demo

Smart pointers

We define a class SPtr of reference-counted pointer-like objects.

An SPtr should act like a pointer to a T.

This means if sp is an SPtr, then *sp is a T&.

We need a way to create a smart pointer and to create copies of
them.

Demo 20b-SmartPointer illustrates how this can be done.

CPSC 427, Lecture 20, November 12, 2018 26/26

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/20b-SmartPointer

	Rethrowing Exceptions
	Uncaught Exceptions
	Singleton Design Pattern
	Smart Pointer Demo

