
Outline Singleton More on Functions Casts

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 21
November 14, 2018

CPSC 427, Lecture 21, November 14, 2018 1/23



Outline Singleton More on Functions Casts

Singleton Design Pattern (revisited)

More on Functions

Casts and Conversions

CPSC 427, Lecture 21, November 14, 2018 2/23



Outline Singleton More on Functions Casts

Singleton Design Pattern (revisited)

CPSC 427, Lecture 21, November 14, 2018 3/23



Outline Singleton More on Functions Casts

Another version of Serial

In demo 20b-SmartPointer, we used the singleton design pattern
to create class Serial to serve as a UID generator.

To review, a public static function uidGen() returns a pointer to a
newly created instance of Serial the first time it is called, and it
saves that pointer in a private static variable Sobj.

Subsequent calls to uidGen() simply return the saved pointer.

Because the constructor is private, no other instantiations are
possible.

The instance defines a public operator(), making it a functor
which can be called to return the next UID.

CPSC 427, Lecture 21, November 14, 2018 4/23

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/20b-SmartPointer


Outline Singleton More on Functions Casts

Drawbacks to this implementation

The primary drawback to the implementation of Serial in
20b-SmartPointer is that the client must do two steps to get the
next UID:

1. Call Serial::uidGen() to obtain the instance pointer ip.

2. Call ip() to get the next UID.

In the SPtr example, we confusingly called the instance pointer
uidGen so we could write uidGen() to get the next UID.

By choosing to store the pointer uidGen as a data member of
SPtr, we incur the storage cost on every instance of SPtr.

CPSC 427, Lecture 21, November 14, 2018 5/23

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/20b-SmartPointer


Outline Singleton More on Functions Casts

A streamlined UID generator

In demo 21a-SmartPointer, we improve the implementation of
Serial so that there only a single public static functionnextID()
that the client must call to get the next UID, e.g.,

const int my_id = Serial::newID();

To do this, the code is turned around. uidGen() becomes private,
and the new public static function newID() replaces the old
operator() extension.

Now newID() calls uidGen() each time it is called to get the
instance pointer, which it then uses to access the private data
member nextUID.

CPSC 427, Lecture 21, November 14, 2018 6/23

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/21a-SmartPointer


Outline Singleton More on Functions Casts

Serial.hpp, version 2

// Singleton class for generating unique ID’s

class Serial {

private:

static Serial* Sobj; // pointer to singleton Serial object

int nextUID=0; // data member for next UID to be assigned

static Serial* uidGen() { // instaniates Serial on first call

if (Sobj == nullptr) Sobj = new Serial;

return Sobj;

}

Serial() =default; // private constructor prevents external instantiation

public:

static int newID() { return uidGen()->nextUID++; }

};

CPSC 427, Lecture 21, November 14, 2018 7/23



Outline Singleton More on Functions Casts

More on Functions

CPSC 427, Lecture 21, November 14, 2018 8/23



Outline Singleton More on Functions Casts

Functional composition

Functional composition refers to using the result returned by one
function as the argument for another.

Example: g(f(x)).

The type of f(x) (which is the result type declared in the
definition of f()) must be compatible with the corresponding
parameter type for some method of g().

Types are compatible if they are the same, or if the result type can
be converted to the corresponding parameter type.

CPSC 427, Lecture 21, November 14, 2018 9/23



Outline Singleton More on Functions Casts

Type compatibility

Here’s what the compiler does when it sees the call g(f(x)).

1. It finds the type of f(x). Call it T.

2. It looks for a method for g with signature (T).

3. If it finds one, that method is selected.

4. If not, it searches the methods for g with signatures that are
compatible with (T), meaning that it is possible to convert T
to the type required by the signature.

5. If it finds exactly one such method, then that is used.

6. If it fails to find one, it reports “no match”, and it lists the
candidates it tried.

7. If it finds more than one possible method, it reports
“ambiguous”.

CPSC 427, Lecture 21, November 14, 2018 10/23



Outline Singleton More on Functions Casts

Calling constructors implicitly
Normally, constructors are called implicitly when an object is
created, whether by new (in the case of dynamic storage) or by
having a declaration executed (in the case of automatic storage).

When several constructor methods are present, which is chosen
depends on the arguments supplied, either explicity or through
ctors, but the call itself is implicit.
Examples

I MyClass b creates a stack object and invokes the default
constructor MyClass().

I MyClass b(4): creates a stack object and invokes
constructor MyClass(4).

I new MyClass(6) creates a dynamic object and invokes
constructor MyClass(6).

CPSC 427, Lecture 21, November 14, 2018 11/23



Outline Singleton More on Functions Casts

Calling constructors explicitly

Constructors can also be called explicitly, just like ordinary global
functions.

The meaning is to create a new temporary stack object, just as a
new temporary is created to hold the result of y+z in the
expression x*(y+z).

As with all object construction, the constructor is called when the
object is created, and the destructor is called when it is deleted.

Because the created object is temporary, it must be used
immediately, after which it will be discarded.

This is how throw Fatal("Error message") works. Fatal()

creates an exception object of type Fatal for use by throw.

CPSC 427, Lecture 21, November 14, 2018 12/23



Outline Singleton More on Functions Casts

Conversion using constructor

Now suppose f() returns an object of type A& and g() expects an
argument of type B. What happens with g(f())?

Example 1:

class A; // forward declaration

class B {

public:

B(){}

B(A& aa) { cout << "B constructor called" << endl; }

};

Compiler will use B’s constructor to build a B& from an A&.

Output is “B constructor called”.

CPSC 427, Lecture 21, November 14, 2018 13/23



Outline Singleton More on Functions Casts

Conversion using a cast
Example 2:

class B; // forward declaration

class A {

public:

operator B() {

cout << "operator B cast called" << endl;

return *new B;

}

};

Compiler will use A::operator B() to cast the A& returned by
f() to the B expected by g().

Output is “operator B cast called”.

CPSC 427, Lecture 21, November 14, 2018 14/23



Outline Singleton More on Functions Casts

What if both options exist?
class A; // forward declaration

class B { public:

B(){}

B(A& aa) { cout << "B constructor called" << endl; }

};

class A { public:

operator B() {

cout << "operator B cast called" << endl;

return *new B;

}

};

A& f() { return *new A; }

B& g(B aa) { return *new B; }

Compiler will complain “error: conversion from ’A’ to

’B’ is ambiguous”.

CPSC 427, Lecture 21, November 14, 2018 15/23



Outline Singleton More on Functions Casts

Casts and Conversions

CPSC 427, Lecture 21, November 14, 2018 16/23



Outline Singleton More on Functions Casts

Casts in C

A C cast changes an expression of one type into another.

Examples:
int x;

unsigned u;

double d;

int* p;

(double)x; // type double; preserves semantics

(int)u; // type unsigned; possible loss of information

(unsigned)d; // type unsigned; big loss of information

(long int)p; // type long int; violates semantics

(double*)p; // preserves pointerness but violates semantics

CPSC 427, Lecture 21, November 14, 2018 17/23



Outline Singleton More on Functions Casts

Different kinds of casts

C uses the same syntax for different kinds of casts.

Value casts convert from one representation to another, partially
preserving semantics. Often called conversions.

I (double)x converts integer x to equivalent
double floating point representation.

I (short int)x converts integer x to equivalent
short int, if the integer falls within the range
of a short int.

Pointer casts leave representation alone but change interpretation
of pointer.

I (double*)p treats bits at destination of p as
the representation of a double.

CPSC 427, Lecture 21, November 14, 2018 18/23



Outline Singleton More on Functions Casts

C++ casts

C++ has four kinds of casts.

1. Static cast includes value casts of C. Tries to preserve
semantics, but not always safe. Applied at compile time.

2. Dynamic cast. Applies only to pointers and references to
objects. Preserves semantics. Applied at run time. [See demo
21b-Dynamic cast].

3. Reinterpret cast is like the C pointer cast. Ignores semantics.
Applied at compile time.

4. Const cast. Allows const restriction to be overridden.
Applied at compile time.

CPSC 427, Lecture 21, November 14, 2018 19/23

http://zoo.cs.yale.edu/classes/cs427/2018f/lectures/21b-Dynamic_cast


Outline Singleton More on Functions Casts

Explicit cast syntax

C++ supports three syntax patterns for explicit casts.

1. C-style: (double)x.

2. Functional notation: double(x); myObject(10);.
(Note the similarity to a constructor call.)
Only works for single-word type names.

3. Cast notation:
int x; myBase* b; const int c;

I static cast<double>(x);
I dynamic cast<myDerived*>(b);
I reinterpret cast<int*>(p);
I const cast<int>(c);

CPSC 427, Lecture 21, November 14, 2018 20/23



Outline Singleton More on Functions Casts

Implicit casts
General rule for implicit casts: If a type A expression appears in a
context where a type B expression is needed, use a semantically
safe cast to convert from A to B.

Examples:

I Assignment: int x; double d; x=d; d=x;

I Pointer assignment:
class A { ... };
class B : public A { ... };
A* ap; B* bp; ap = bp;

I Initialization:
A a=x; converts x to an A, then copies.

I Construction:
A a(x); calls A constructor, possibly casting x.

CPSC 427, Lecture 21, November 14, 2018 21/23



Outline Singleton More on Functions Casts

Ambiguity

Can be more than one way to cast from B to A.
class B;

class A { public:

A(){}

A(B& b) { cout<< "constructed A from B\n"; }

};

class B { public:

A a;

operator A() { cout<<"casting B to A\n"; return a; }

};

int main() {

A a; B b;

a=b; // Triggers error comments

}

Comment from g++: conversion from ’B’ to ’A’ is ambiguous
Comment from clang++: error: reference initialization of type
’A &&’ with initializer of type ’B’ is ambiguous

CPSC 427, Lecture 21, November 14, 2018 22/23



Outline Singleton More on Functions Casts

explicit keyword

Not always desirable for constructor to be called implicitly.

Use explicit keyword to inhibit implicit calls.

Previous example compiles fine with use of explicit:
class B;

class A {

public

A(){}

explicit A(B& b) { cout<< "constructed A from B\n"; }

};

...

Question: Why was an explicit definition of the default constructor
not needed?

CPSC 427, Lecture 21, November 14, 2018 23/23


	Singleton Design Pattern (revisited)
	More on Functions
	Casts and Conversions

