
Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 23
November 28, 2018

CPSC 427, Lecture 23, November 28, 2018 1/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

PS6: Who prints the blockchain?

STL Iterators

STL Algorithms

Name Visibility

CPSC 427, Lecture 23, November 28, 2018 2/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

PS6: Who prints the blockchain?

CPSC 427, Lecture 23, November 28, 2018 3/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

OO-design problem

In PS6, we need a function print that prints a blockchain.

Which class does print belong in? Possibilities:

I Class Blockchain, because Blockchain is semantically
meaningful.

I Class Block, because to print a blockchain requires knowledge
of how the chain is represented and how to go from one block
to the next. That knowledge is only available in Block.

CPSC 427, Lecture 23, November 28, 2018 4/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

An analog of class demo 13-BarGraph

A Row is represented by a linked list of Cells.

This is analogous to a Blockchain being represented by a linked
list of Blocks.

The Row print function reaches inside the Cell in order to iterate
down the list of Cells.

This is possible because Row is a friend class of Cell.

Note: There is a comment in row.cpp that says,
// Design decision: print Cell data directly; no delegation of print

CPSC 427, Lecture 23, November 28, 2018 5/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/13-BarGraph

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

An analog to STL containers

Iterators (see next section) are like pointers and can be used by a
client to iterate through a container such as a vector or list.

One could define a class iterator inside of Blockchain to allow
one to iterate through a chain of blocks.

The Blockchain::print() function could then simply do
for(Block::iterator it=begin(); it!=end(); ++it) out<<*it;

Unfortunately, this would result in the blocks being printed in
reverse order from what I specified in the assignment. You would
need a backwards iterator, which doesn’t work for singly linked
lists.

In addition, iterators still do not overcome the problem of a
Blockchain function needing knowledge of the structure of a Block.

CPSC 427, Lecture 23, November 28, 2018 6/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

A compromise

The compromise I chose for my own solution is to give Block two
print functions:

I print() prints a single block.

I printChain() prints the whole chain of blocks. An easy
recursive solution prints the chain in the right order.

I printChain() delegates the printing of a single block to
Block::print().

Blockchain::print() delegates the printing of the whole
blockchain to Block::printChain().

CPSC 427, Lecture 23, November 28, 2018 7/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

STL Iterators

CPSC 427, Lecture 23, November 28, 2018 8/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Containers

A container stores a collection of objects of arbitrary type T.

The basic containers in STL are:

I vector – a dynamic array

I deque – a double-ended queue

I list – a doubly linked list

I map – an associative array of key/value pairs with unique keys

I set – a sorted collection of unique values

I multimap – an associative array of key/value pairs with
duplicate keys allowed

I multiset – a sorted collection of values with multiplicity

CPSC 427, Lecture 23, November 28, 2018 9/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Iterators

Iterators are like generalized pointers into containers.

Most pointer operations *, ->, ++, ==, !=, etc. work with iterators.

I begin() returns an iterator pointing to the first element of
the vector.

I end() returns an iterator pointing past the last element of the
vector.

CPSC 427, Lecture 23, November 28, 2018 10/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Iterator example

Here’s a program to store and print the first 10 perfect squares.

#include <iostream>

#include <vector>

using namespace std;

int main() {

vector<int> tbl(10);

for (unsigned k=0; k<10; k++) tbl[k] = k*k;

vector<int>::iterator pos;

for (pos = tbl.begin(); pos != tbl.end(); pos++)

cout<< *pos<< endl;

}

CPSC 427, Lecture 23, November 28, 2018 11/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Using iterator inside a class

#include <iostream>

#include <vector>

using namespace std;

class Squares : vector<int> {

public:

Squares(unsigned n) : vector<int>(n) {

for (unsigned k=0; k<n; k++) (*this)[k] = k*k; }

ostream& print(ostream& out) const {

const_iterator pos; // must be const_iterator

for (pos=begin(); pos!=end(); pos++) out<< *pos<< endl;

return out; }

};

int main() {

Squares sq(10);

sq.print(cout);

}

CPSC 427, Lecture 23, November 28, 2018 12/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Using subscripts and size()

#include <iostream>

#include <vector>

using namespace std;

class Squares : vector<int> {

public:

Squares(unsigned n) {

for (unsigned k=0; k<n; k++) push_back(k*k); }

ostream& print(ostream& out) const {

for (unsigned k=0; k<size(); k++) out<< (*this)[k]<< endl;

return out; }

};

int main() {

Squares sq(10);

sq.print(cout);

}

CPSC 427, Lecture 23, November 28, 2018 13/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

STL Algorithms

CPSC 427, Lecture 23, November 28, 2018 14/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Algorithms

STL has algorithms as well as data structures.

You must #include <algorithm>.

Commonly used: copy, fill, swap, max, min, max element,
min element, but there are many many more.

We’ll look at sort in greater detail.

CPSC 427, Lecture 23, November 28, 2018 15/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

STL sort algorithm

sort works only on randomly-accessible containers such as
vector. (list has its own sort method.)

sort takes two iterator arguments to designate the sort range.

It can also take an optional third “comparison” argument to define
the sort order.

CPSC 427, Lecture 23, November 28, 2018 16/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Reverse sort example

class Squares : vector<int> {

public:

Squares(unsigned n) {

for (unsigned k=0; k<n; k++) push_back(k*k);}

// decreasing order; *** must be static ***

static bool cmp(const int& x1, const int& x2) {

return x1 > x2; }

void rsort() { sort(begin(), end(), cmp); }

ostream& print(ostream& out) const {

for (unsigned k=0; k<size(); k++) out<< (*this)[k]<< endl;

return out; }

};

CPSC 427, Lecture 23, November 28, 2018 17/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Reverse sort example (cont.)

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

class Squares : vector<int> {

...

};

int main() {

Squares sq(10);

sq.rsort();

sq.print(cout);

}

CPSC 427, Lecture 23, November 28, 2018 18/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

pair<T1, T2>

A pair<T1, T2> is an ordered pair of elements of type T1 and T2,
respectively.

Class pair<T1, T2> has public data members first and second.

Example:

pair<string, double> item("book", 49.95);

// makes pair <"book", 49.95>

cout<< item.first; // prints "book"

cout<< item.second; // prints 49.95

CPSC 427, Lecture 23, November 28, 2018 19/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

map<Key,Val>

map<Key,Val> associates a value with each key.

More precisely, it is an ordered collection of elements of type
pair<Key,Val>.

You must #include <map>.

Can use standard subscript notation to access map contents, where
subscript is the key.

Can also use a map iterator, which returns a pointer to a pair.

CPSC 427, Lecture 23, November 28, 2018 20/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Using a map<Key,Val>

Example:

typedef map<string,double> myMap; // alias for convenience

myMap::iterator pos;

myMap m; // a map from strings to doubles

m["dog"]; // puts pair <"dog",0.0> into m

m["bird"]=5.2; // puts pair <"bird",5.2> into m

pos = m.find("cat"); // returns m.end() for not found

cout<< (pos==m.end())<< endl;// prints 1 (true)

pos = m.find("bird"); // pos points to <"bird",5.2>

if (pos!=m.end()) {

cout<< pos->first<< endl; // prints "bird"

cout<< pos->second<< endl; // prints 5.2; }

}

CPSC 427, Lecture 23, November 28, 2018 21/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Copying from one container to another

Two ways to copy multiple elements in one statement.

Suppose m is a map and v a vector of pairs compatible with m.

1. v.assign(m.begin(), m.end());

2. Supply m.begin() and m.end() as arguments to the v

constructor.

CPSC 427, Lecture 23, November 28, 2018 22/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Copying from map to vector of pairs
#include <iostream>

#include <map>

#include <vector>

#include <string>

using namespace std;

int main() {

map<string,double> m;

m["dog"]=3; m["cat"]=2;

// construct p from m

vector<pair<string,double> > p(m.begin(),m.end());

// declare iterator

vector<pair<string,double> >::const_iterator pos;

// print p

for (pos=p.begin(); pos!=p.end(); ++pos)

cout<< pos->first<< " "<< pos->second<< endl;

}

CPSC 427, Lecture 23, November 28, 2018 23/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

string class
The standard string class tries to make strings behave like other
built-in data types.

Like vector<char>, strings are growable, but they are not
implemented using vector, and they support many special string
operations.

They can be assigned (=, assign()), compared (==, !=, <,

<=, >, >=, compare()), concatenated (+), read and written
(>>, <<), searched (find(), . . .), extracted ([], substr()),
modified (+=, append(), . . .), and more.

Their length can be found (size(), length()).

s.c str() or s.data() returns a copy of s as a C string.

You must #include <string>.

CPSC 427, Lecture 23, November 28, 2018 24/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Name Visibility

CPSC 427, Lecture 23, November 28, 2018 25/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Private derivation (default)

class B : A { ... }; specifies private derivation of B from A.

A class member inherited from A become private in B.
Like other private members, it is inaccessible outside of B.

If public in A, it can be accessed from within A or B or via an
instance of A, but not via an instance of B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427, Lecture 23, November 28, 2018 26/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Private derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // privacy violation

CPSC 427, Lecture 23, November 28, 2018 27/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Public derivation

class B : public A { ... }; specifies public derivation of B
from A.

A class member inherited from A retains its privacy status from A.

If public in A, it can be accessed from within B and also via
instances of A or B.

If private in A, it can only be accessed from within A.
It cannot even be accessed from within B.

CPSC 427, Lecture 23, November 28, 2018 28/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Public derivation example
Example:

class A {

private: int x;

public: int y;

};

class B : public A {

... f() {... x++; ...} // privacy violation

};

//-------- outside of class definitions --------

A a; B b;

a.x // privacy violation

a.y // ok

b.x // privacy violation

b.y // ok

CPSC 427, Lecture 23, November 28, 2018 29/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

The protected keyword

protected is a privacy status between public and private.

Protected class members are inaccessible from outside the class
(like private) but accessible within a derived class (like public).

Example:

class A {

protected: int z;

};

class B : A {

... f() {... z++; ...} // ok

};

CPSC 427, Lecture 23, November 28, 2018 30/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Protected derivation

class B : protected A { ... }; specifies protected
derivation of B from A.

A public or protected class member inherited from A becomes
protected in B.

If public in A, it can be accessed from within B and also via
instances of A but not via instances of B.

If protected in A, it can be accessed from within A or B but not
from outside.

If private in A, it can only be accessed from within A.
It cannot be accessed from within B.

CPSC 427, Lecture 23, November 28, 2018 31/34

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Surprising example 1
Link to surprising-1.cpp.

1 class A {

2 protected:

3 int x;

4 };

5 class B : public A {

6 public:

7 int f() { return x; } // ok

8 int g(A* a) { return a->x; } // privacy violation

9 };

Result:

tryme1.cpp: In member function ’int B::g(A*)’:

tryme1.cpp:3: error: ’int A::x’ is protected

tryme1.cpp:9: error: within this context

CPSC 427, Lecture 23, November 28, 2018 32/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/23-Visibility/surprising-1.cpp

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Surprising example 2: Contrast the following
Link to surprising-2a.cpp.

1 class A { };

2 class B : public A {}; // <-- public derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result: OK.

Link to surprising-2b.cpp.

1 class A { };

2 class B : private A {}; // <-- private derivation

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:
tryme2.cpp: In function ’int main()’:

tryme2.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 23, November 28, 2018 33/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/23-Visibility/surprising-2a.cpp
https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/23-Visibility/surprising-2b.cpp

Outline PS6: Who prints the blockchain? STL Iterators STL Algorithms Visibility

Surprising example 3

Link to surprising-3.cpp.

1 class A { protected: int x; };

2 class B : protected A {};

3 int main() { A* ap; B* bp;

4 ap = bp; }

Result:

tryme3.cpp: In function ’int main()’:

tryme3.cpp:4: error: ’A’ is an inaccessible base of ’B’

CPSC 427, Lecture 23, November 28, 2018 34/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/23-Visibility/surprising-3.cpp

	PS6: Who prints the blockchain?
	STL Iterators
	STL Algorithms
	Name Visibility

