
Outline General OO Principles Function-Like Constructs Design Patterns

CPSC 427: Object-Oriented Programming

Michael J. Fischer

Lecture 25
December 5, 2018

CPSC 427, Lecture 25, December 5, 2018 1/34

Outline General OO Principles Function-Like Constructs Design Patterns

General OO Principles

Function-Like Constructs

Design Patterns

CPSC 427, Lecture 25, December 5, 2018 2/34

Outline General OO Principles Function-Like Constructs Design Patterns

General OO Principles

CPSC 427, Lecture 25, December 5, 2018 3/34

Outline General OO Principles Function-Like Constructs Design Patterns

General OO principles

1. Encapsulation

2. Expert

3. Delegation

4. Narrow Interface

5. Creator

6. Low Coupling

7. High Cohesion

8. Don’t Talk to Strangers

9. Polymorphism

10. Chain of Responsibility

CPSC 427, Lecture 25, December 5, 2018 4/34

Outline General OO Principles Function-Like Constructs Design Patterns

Basic Principles for OO Design

These are recognized as important fundamental design principles.

I Encapsulation: data members should be private. Accessors
should be defined only when necessary.

I Expert: Each class should do for itself all actions that involve
its data members.

I Delegation: Delegate all actions to the class that is the expert
on the data.

I Narrow interface: Keep the set of public functions as simple
as possible. Functions that are not needed by client classes
should be private.

I Creator: Allocate and initialize an object in the class that
composes, aggregates, or contains it.

CPSC 427, Lecture 25, December 5, 2018 5/34

Outline General OO Principles Function-Like Constructs Design Patterns

Low coupling

A UML diagram contains links between classes. The number of
links should be minimized.

When assigning responsibility for a task to a class, assign it so that
the placement does not increase coupling.

RetailStore Inventory

Item
*

Bad: Unnecessary coupling

RetailStore Inventory

Item
*

Good: Minimal coupling

CPSC 427, Lecture 25, December 5, 2018 6/34

Outline General OO Principles Function-Like Constructs Design Patterns

High cohesion

A class should have a single, narrow purpose.

I The members of the class should be strongly related and
focused on the purpose and responsibilities of the class.

I Don’t let the classes “sprawl” by adding more and more
specialized features.

I Maintain the separation of purposes: Define structural
elements and semantic elements in separate classes.

I Example: If you want a linked list of books, define a book
class and define a pair classes, List and Cell. Don’t define the
members of a book in the Cell class.

CPSC 427, Lecture 25, December 5, 2018 7/34

Outline General OO Principles Function-Like Constructs Design Patterns

Don’t talk to strangers!

Principle: The class A should only call functions in class B if you
can see the class name B when looking at the header file of A.

Reason: Program maintenance is difficult when there are hidden
dependencies.

In the diagram, RetailStore should not be calling the Item::sell

because there is no mention of the Item class in the RetailStore
class definition. Instead, RetailStore should call a function in
Inventory and let Inventory figure out how to handle its Items.

RetailStore Inventory Item
- Inv : Inventory - L : Itemlist + order(int)

+ sell(int)+ find(key) : Item*
+ sell(key, int): void

*

+ sell(key, int) : void

CPSC 427, Lecture 25, December 5, 2018 8/34

Outline General OO Principles Function-Like Constructs Design Patterns

Polymorphism
Principle: Use polymorphism (derivation + virtual functions) to
implement a set of related but not identical classes.

Reason: This lets the programmer create a common stable
interface for dealing with all variations, and also avoids duplicating
blocks of code. Coding, debugging, and program maintenance all
become easier.

UndergradStudent

register(course) { ... }

Student

register(course) =0

Alumnus

register(course) { ... }register(course) { ... }

GradStudent

CPSC 427, Lecture 25, December 5, 2018 9/34

Outline General OO Principles Function-Like Constructs Design Patterns

Chain of Responsibility
Objects created by declarations are stored on the run-time stack.

I These objects are deleted automatically when control leaves
the declaring block.

I When an object is put into an array or an STL container
(such as vector), it is copied or moved. The array or vector
becomes the “owner” and will manage the storage.

Objects created using new are the programmer’s responsibility.

I There must be a clearly defined “owner” of every dynamically
created object.

I When an object pointer is put into a container (an array or
vector), the “owner” is the class that declares the container.

I The owner is responsible for deleting the object at the end of
its useful lifetime.

CPSC 427, Lecture 25, December 5, 2018 10/34

Outline General OO Principles Function-Like Constructs Design Patterns

Function-Like Constructs

CPSC 427, Lecture 25, December 5, 2018 11/34

Outline General OO Principles Function-Like Constructs Design Patterns

Named functions

C and C++ support named global functions. Declaration syntax is
return type name(parameters...) {function body}

C++ also permits named member functions. These are declared
inside of a class using the same syntax as for named global
functions, except an optional const keyword following the
parameter list.

The function name is qualified by the class name. Thus, the name
of f within class MyClass is MyClass::f

CPSC 427, Lecture 25, December 5, 2018 12/34

Outline General OO Principles Function-Like Constructs Design Patterns

Function calls

Syntax for calling a named global function:
name(arguments...)

A function call is an expression whose type is the return type of
the function.

Syntax for calling a named member function of class MyClass is
implicit arg.name(explicit arguments...)

The implicit argument must be an object of type MyClass. If
called from within MyClass, the implicit argument defaults to
*this.

CPSC 427, Lecture 25, December 5, 2018 13/34

Outline General OO Principles Function-Like Constructs Design Patterns

Function types

The type of a named global function is its signature, that is, the
return type and the list of parameter types.

For example, a function that takes a double and an integer
parameter and returns a long integer has signature
long int (&) (double, int&)

To define such a function, we would add names for the function
and parameters and a body to perform the computation.
long int (myfun) (double d, int& k) {

return (k += 2.5*d);

}
The parens around myfun are optional and would normally be
omitted.

CPSC 427, Lecture 25, December 5, 2018 14/34

Outline General OO Principles Function-Like Constructs Design Patterns

typedef for function types

Function types can be named using typedef. The declaration
typedef long int (myFunType) (double, int&);

defines the type name myFunType.

One can then declare a function to be of that type.
myFunType myfun;

and use it to define an alias myfun2 for myfun:
myFunType& myfun2 = myfun;

Without the typedef, it would look like this:
long int (&myfun2) (double, int&) = myfun;

(See demo 25-Functors/funtypes.cpp.)

CPSC 427, Lecture 25, December 5, 2018 15/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/funtypes.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

A new way to give names to types

C++ now provides another syntax for defining new type names
(since c++11). Instead of

typedef long int (myFunType) (double, int&);

one can write

using myFunType = long int (&) (double, int&);

(See demo 25-Functors/using.cpp.)

CPSC 427, Lecture 25, December 5, 2018 16/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/using.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

Function pointers

One can have pointers to functions. Function points can be passed
as the argument to functions that take function parameters such as
the standard template function sort(). The third argument is the
comparison function comp to be used when comparing elements. It
returns true if its first argument is “smaller” than its second.

bool descendingOrder(int i, int j)

{ return (j<i); }
using Comp = bool (*) (int, int);

Comp cptr;

cptr = descendingOrder;

sort (myvector.begin(), myvector.end(), cptr);

(See demo 25-Functors/sort-funptr.cpp.)

CPSC 427, Lecture 25, December 5, 2018 17/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/sort-funptr.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

Anonymous functions (a.k.a. lambda functions)

C++ now has anonymous functions. The previous example could be
rewritten as

sort (myvector.begin(), myvector.end(),

[] (int i, int j) { return (j<i);});

(See demo 25-Functors/sort-lambda.cpp.)

CPSC 427, Lecture 25, December 5, 2018 18/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/sort-lambda.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

Functors

A functor an instance of a class that defines operator(). It can
be called using function syntax. Here’s how it can be used as a
sort comparator.

class ComparAscending {

public:

bool operator()(int i, int j) { return (i<j); }

};

...

sort(myvector.begin(), myvector.end()-4,

CompareAscending());

(See demo 25-Functors/sort-functor.cpp.)

CPSC 427, Lecture 25, December 5, 2018 19/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/sort-functor.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

Closures

Functors and lambda expressions gain their power through closures.

A closure is an expression in which some of the variables have been
bound to values, whereas other remain as function parameters.

A closure can be used like any other function.

A functor with data members acts like a closure. It result may
depend on the values of those data members. Different
instantiations of the functor class may result in functors with
different behaviors since the data members may have different
values.

CPSC 427, Lecture 25, December 5, 2018 20/34

Outline General OO Principles Function-Like Constructs Design Patterns

Lambda capture

A lambda expression has the (simplified) syntax:
[capture list] (parameters...) -> result type {body}

When evaluated, the result is a closure with the variables on the
capture list being “imported” into the body.

In fact, when a lambda expression is evaluated, the result is a
functor of a new compiler-generated class.

The function template in header file <functional> can be used
to turn a closure into an object of a function type.

CPSC 427, Lecture 25, December 5, 2018 21/34

Outline General OO Principles Function-Like Constructs Design Patterns

Closure example

Demo 25-Functors/closure.cpp uses map, function, and
closures with value-capture to define a table of sales tax functions.

The map key is a state name (or abbreviation), stored as a
string. The map value is a tax computation function that takes a
sales amount as its argument and returns the sales tax. It uses the
captured variable rate to computer the tax.

Each map pair has a tax computation function that was generated
at run time to use a particular tax rate in its computation. The
rate capture takes place in the line

taxFunType taxfun = [rate](double amt) { return amt*rate; };

CPSC 427, Lecture 25, December 5, 2018 22/34

https://zoo.cs.yale.edu/classes/cs427/2018f/lectures/25-Functors/closure.cpp

Outline General OO Principles Function-Like Constructs Design Patterns

Design Patterns

CPSC 427, Lecture 25, December 5, 2018 23/34

Outline General OO Principles Function-Like Constructs Design Patterns

What is a design pattern?

A pattern has four essential elements.1

1. A pattern name.

2. The problem, which describes when to apply the pattern.

3. The solution, which describes the elements, relations, and
responsibilities.

4. The consequences, which are the results and tradeoffs.

1Erich Gamma et al., Design Patterns, Addison-Wesley, 1995.

CPSC 427, Lecture 25, December 5, 2018 24/34

Outline General OO Principles Function-Like Constructs Design Patterns

Adaptor pattern

Sometimes a toolkit class is not reusable because its interface does
not match the domain-specific interface an application requires.

Solution: Define an adapter class that can add, subtract, or
override functionality, where necessary.

CPSC 427, Lecture 25, December 5, 2018 25/34

Outline General OO Principles Function-Like Constructs Design Patterns

Adaptor diagram

There are two ways to do this; on the left is a class adapter, on the
right an object adapter.

Target

ClassAdaptor

request()

request()

Adaptee

rightAction_wrongName()

ClassAdaptor::request() {
 rightAction_wrongName();
}

Client

ObjectAdaptor::request() {
 a->rightAction_wrongName();
}

Target

ObjectAdaptor

Adaptee

rightAction_wrongName()

request()

request()

Client

Adaptee* a

CPSC 427, Lecture 25, December 5, 2018 26/34

Outline General OO Principles Function-Like Constructs Design Patterns

Indirection

This pattern is used to decouple the application from the
implementation, where an implementation depends on the
interface of some low-level device.

Goal is to make the application stable, even if the device changes.

AirlineSeat

if_seat()
reserve_seat()
free_seat()
...

Modem

dial();
receive();
send()
...

System API calls:
 open_port(int);
 dial(phonenumber);

Modem::dial(phonenumber)
{
 :: open_port(1);
 :: dial(2039821234);
}

calls calls

CPSC 427, Lecture 25, December 5, 2018 27/34

Outline General OO Principles Function-Like Constructs Design Patterns

Polymorphism pattern

In an application where the abstraction has more than one
implementation, define an abstract base class and one or more
subclasses.

Let the subclasses implement the abstract operations.

This decouples the implementation from the abstraction and allows
multiple implementations to be introduced, as needed.

CPSC 427, Lecture 25, December 5, 2018 28/34

Outline General OO Principles Function-Like Constructs Design Patterns

Polymorphism diagram

UndergradStudent

register(course) { ... }

Student

register(course) =0

Alumnus

register(course) { ... }register(course) { ... }

GradStudent

CPSC 427, Lecture 25, December 5, 2018 29/34

Outline General OO Principles Function-Like Constructs Design Patterns

Bridge pattern

Bridge generalizes the Indirection pattern.

It is used when both the application class and the implementation
class are (or might be) polymorphic.

Bridge decouples the application from the polymorphic
implementation, greatly reducing the amount of code that must be
written, and making the application much easier to port to
different implementation environments.

CPSC 427, Lecture 25, December 5, 2018 30/34

Outline General OO Principles Function-Like Constructs Design Patterns

Bridge diagram

In the diagram below, we show that there might be several kinds of
windows, and the application might be implemented on two
operating systems. The bridge provides a uniform pattern for doing
the job.

ImageWindow

Window

DialogWindow

draw_box()

draw_text()
draw_rectangle()

draw_border()

WIP : WindowImp*

XWindowImp WindowNTImp

WindowImplementation

imp_draw_text()
imp_draw_rectangle()

=0
=0

imp_draw_text();
imp_draw_rectangle();

imp_draw_text();
imp_draw_rectangle();

DialogWindow::draw_box() {
 draw_rectangle();
 draw_text();
}

ImageWindow::draw_border() {
 draw_rectangle();
}

Window::draw_text() {
 WIP->imp_draw_text();
}

CPSC 427, Lecture 25, December 5, 2018 31/34

Outline General OO Principles Function-Like Constructs Design Patterns

Subject-Observer or Publish-Subscribe: problem

Problem: Your application program has many classes and many
objects of some of those classes. You need to maintain consistency
among the objects so that when the state of one changes, its
dependents are automatically notified. You do not want to
maintain this consistency by using tight coupling among the
classes.

Example: An OO spreadsheet application contains a data object,
several presentation “views” of the data, and some graphs based
on the data. These are separate objects. But when the data
changes, the other objects should automatically change.

CPSC 427, Lecture 25, December 5, 2018 32/34

Outline General OO Principles Function-Like Constructs Design Patterns

Subject-Observer or Publish-Subscribe: pattern

Call the SpreadsheetData class the subject; the views and graphs
are the observers.

The basic Spreadsheet class composes an observer list and provides
an interface for attaching and detaching Observer objects.

Observer objects may be added to this list, as needed, and all will
be notified when the subject (SpreadsheetData) changes.

We derive a concrete subject class (SpreadsheetData) from the
Spreadsheet class. It will communicate with the observers through
a get state() function, that returns a copy of its state.

CPSC 427, Lecture 25, December 5, 2018 33/34

Outline General OO Principles Function-Like Constructs Design Patterns

Subject-Observer or Publish-Subscribe: diagram

Spreadsheet::notify() {
 OL.updateall()
}

ObserverList::updateall() {
 for all x in the list,
 x->update()
}

ObserverList

updateall()

Observer::update() {
 observer_state =
 D->get_state();
}

attach(observer)
detach(observer)
notify()
...

SpreadsheetData

+ get_state()
- subject_state

-OL: Observer List
Spreadsheet

FullDataView

AnnualReport

BarGraph

update();

- observer_state
- D: SpreadsheetData*

Observer

update() =0

*
SS: Spreadsheet*

Spreadsheet::attach(ob) {
 OL.add (ob);
}

When a viewer is
instantiated, it is given
a pointer to the
SpreadsheetData D.

-D: SpreadsheetData

See textbook for more details.

CPSC 427, Lecture 25, December 5, 2018 34/34

	General OO Principles
	Function-Like Constructs
	Design Patterns

