
Applied C and C++ Programming

Alice E. Fischer

David W. Eggert

University of New Haven

Michael J. Fischer

Yale University

August 2018

Copyright c©2018

by Alice E. Fischer, David W. Eggert, and Michael J. Fischer

All rights reserved. This manuscript may be used freely by teachers and students in classes at the
University of New Haven and at Yale University. Otherwise, no part of it may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the authors.

Appendix A

The ASCII Code

The characters of the 7-bit ASCII code are listed, in order. The first two columns of each group give the code
in base 10 and as a hexadecimal literal. The third column gives the printed form (if any) or a description of
the character. Last is the escape code for the character, if one exists.

0 0x00 null \0

1 0x01

2 0x02

3 0x03

4 0x04

5 0x05

6 0x06

7 0x07 bell \a

8 0x08 backspace \b

9 0x09 tab \t

10 0x0A linefeed \n

11 0x0B vertical tab \v

12 0x0C formfeed \f

13 0x0D carriage return \r

14 0x0E

15 0x0F

16 0x10

17 0x11

18 0x12

19 0x13

20 0x14

21 0x15

22 0x16

23 0x17

24 0x18

25 0x19

26 0x1A

27 0x1B escape \\

28 0x1C

29 0x1D

30 0x1E

31 0x1F

32 0x20 space
33 0x21 !

34 0x22 ", \"
35 0x23 #

36 0x24 $

37 0x25 %

38 0x26 &

39 0x27 ’, \’
40 0x28 (

41 0x29)

42 0x2A *

43 0x2B +

44 0x2C ,

45 0x2D -

46 0x2E .

47 0x2F /

48 0x30 0

49 0x31 1

50 0x32 2

51 0x33 3

52 0x34 4

53 0x35 5

54 0x36 6

55 0x37 7

56 0x38 8

57 0x39 9

58 0x3A :

59 0x3B ;

60 0x3C <

61 0x3D =

62 0x3E >

63 0x3F ?

64 0x40 @

65 0x41 A

66 0x42 B

67 0x43 C

68 0x44 D

69 0x45 E

70 0x46 F

71 0x47 G

72 0x48 H

73 0x49 I

74 0x4A J

75 0x4B K

76 0x4C L

77 0x4D M

78 0x4E N

79 0x4F O

80 0x50 P

81 0x51 Q

82 0x52 R

83 0x53 S

84 0x54 T

85 0x55 U

86 0x56 V

87 0x57 W

88 0x58 X

89 0x59 Y

90 0x5A Z

91 0x5B [

92 0x5C \

93 0x5D]

94 0x5E ^
95 0x5F _

96 0x60 ‘

97 0x61 a

98 0x62 b

99 0x63 c

100 0x64 d

101 0x65 e

102 0x66 f

103 0x67 g

104 0x68 h

105 0x69 i

106 0x6A j

107 0x6B k

108 0x6C l

109 0x6D m

110 0x6E n

111 0x6F o

112 0x70 p

113 0x71 q

114 0x72 r

115 0x73 s

116 0x74 t

117 0x75 u

118 0x76 v

119 0x77 w

120 0x78 x

121 0x79 y

122 0x7A z

123 0x7B {

124 0x7C |

125 0x7D }

126 0x7E ~
127 0x7F delete

671

672 APPENDIX A. THE ASCII CODE

Appendix B

The Precedence of Operators in C

673

674 APPENDIX B. THE PRECEDENCE OF OPERATORS IN C

Arity Operator Meaning Precedence Associativity

a[k] Subscript 17 left to right
fname(arg list) Function call 17 "

. Struct part selection 17 "

-> Selection using pointer 17 "

Unary postfix ++, -- Postincrement k++, decrement k-- 16 left to right
" prefix ++, -- Preincrement ++k, decrement --k 15 right to left
" sizeof # of bytes in object 15 "

" ~ Bitwise complement 15 "

" ! Logical NOT 15 "

" + Unary plus 15 "

" - Negate 15 "

" & Address of 15 "

" * Pointer dereference 15 "

" (typename) Type cast 14 "

Binary * Multiply 13 left to right
" / Divide 13 "

" % Mod 13 "

" + Add 12 "

" - Subtract 12 "

" << Left shift 11 "

" >> Right shift 11 "

" < Less than 10 "

" > Greater than 10 "

" <= Less than or equal to 10 "

" >= Greater than or equal to 10 "

" == Is equal to 9 "

" != Is not equal to 9 "

" & Bitwise AND 8 "

" ^ Bitwise exclusive OR 7 "

" | Bitwise OR 6 "

" && Logical AND 5 "

" || Logical OR 4 "

Ternary ...?...:... Conditional expression 3 right to left

Binary = Assignment 2 "

" += -= Add or subtract and store back 2 "

" *= /= %= Times, divide, or mod and store 2 "

" &= ^= |= Bitwise operator and assignment 2 "

" <<= >>= Shift and store back 2 "

" , Left-side-first sequence 1 left to right

Figure B.1. The precedence of operators in C.

Appendix C

Keywords

C.1 Preprocessor Commands

The commands in the first group are presented in this text. The other commands are beyond its scope.

• Basic: #include, #define, #ifndef, #endif.

• Advanced: #if, #ifdef, #elif, #else, defined(), #undef, #error, #line, #pragma.

• Advanced macro operators: # (stringize), ## (tokenize).

C.2 Control Words

These words control the order of execution of program blocks.

• Functions: main, return.

• Conditionals: if, else, switch, case, default.

• Loops: while, do, for.

• Transfer of control: break, continue, goto.

C.3 Types and Declarations

• Integer types: long, int, short, char, signed, unsigned.

• Real types: double, float, long double.

• An unknown or generic type: void.

• Type qualifiers: const, volatile.

• Storage class: auto, static, extern, register.

• Type operator: sizeof.

• To create new type names: typedef.

• To define new type descriptions: struct, enum, union.

C.4 Additional C++ Reserved Words

The following are reserved words in C++ but not in C. C programmers should either avoid using them or be
careful to use them in ways that are consistent with their meaning in C++.

675

676 APPENDIX C. KEYWORDS

• Classes: class, friend, this, private, protected, public,
template.

• Functions and operators: inline, virtual, operator.

• Kinds of casts: reinterpret_cast, static_cast, const_cast, dynamic_cast.

• Boolean type: bool, true, false.

• Exceptions: try, throw, catch.

• Memory allocation: new, delete.

• Other: typeid, namespace, mutable, asm, using.

C.5 An Alphabetical List of C and C++ Reserved Words

#

##

#define

#elif

#else

#endif

#error

#if

#ifdef

#ifndef

#include

#line

#pragma

#undef

asm

auto

bool

break

case

catch

char

class

const

const_cast

continue

default

defined()

delete

do

double

else

enum

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

operator

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

union

unsigned

using

virtual

void

volatile

while

Appendix D

Advanced Aspects C Operators
This appendix describes important facts about a few C operators that were omitted in earlier chapters
because they were too advanced when related material was covered.

D.1 Assignment Combination Operators

All the assignment-combination operators have the same very low precedence and associate right to left.
This means that a series of assignment operators will be parsed and executed right to left, no matter what
operators are used. Figure D.1 demonstrates the syntax, precedence, and associativity of the arithmetic
combinations.

Notes on Figure D.1. Assignment combinations.

Box: precedence and associativity.
• This long expression shows that all the combination operators have the same precedence and that they

are parsed and executed right to left.

• The += is parsed before the *= because it is on the right. The fact that * alone has higher precedence
than + alone is not relevant to the combination operators.

• The parse tree for this expression is shown in Figure D.2. Note that assignment-combination operators
have two branches connected to a variable. The right branch represents the operand value used in the
mathematical operation. The left branch, with the arrowhead, reflects the changing value of the variable
due to the assignment action after the calculation is complete.

• The output from this program is

Demonstrating Assignment Combinations

Assignment operators associate right to left.

Initial values:

k = 10 m = 5 n = 64 t = -63

Executing t /= n -= m *= k += 7 gives the values:

k = 17 m = 85 n = -21 t = 3

D.2 More on Lazy Evaluation and Skipping

With lazy evaluation, when we skip, we skip the right operand. This isn’t confusing when the right operand
is only a simple variable. However, sometimes it is an expression with several operators. For example, look
at the parse tree in Figure D.3. The left operand of the || operator is the expression a < 10 and its right
operand is a >= 2 * b && b != 1. The parse tree makes clear the relationship of operands to operators.

We can use parse trees to visualize the evaluation process. The stem of the tree represents the value of
the entire expression. The stem of each subtree represents the value of the parts of the tree above it. To
evaluate an expression, we start by writing the initial values of the variables above the expression. However,

677

678 APPENDIX D. ADVANCED ASPECTS C OPERATORS

We exercise the arithmetic assignment-combination operators. The parse tree for the last expression is shown
in Figure D.2. Note that these operators all have the same precedence and they associate right to left.

#include <stdio.h>

int main(void)

{

double k = 10.0; double m = 5.0;

double n = 64.0; double t = -63.0;

puts("\n Demonstrating Assignment Combinations");

puts(" Assignment operators associate right to left.\n"

" Initial values: ");

printf("\t k = %.2g m = %.2g n = %.2g t = %.2g \n", k, m, n, t);

t /= n -= m *= k += 7;

puts(" Executing t /= n -= m *= k += 7 gives the values: ");

printf("\t k = %.2g m = %.2g n = %.2g t = %.2g \n\n", k, m, n, t);

}

Figure D.1. Assignment combinations.

start the evaluation process at the stem of the tree. Starting at the top (the leaves) in C will give the wrong
answer in many cases. As each operator is evaluated, write the answer on the stem under that operator.
Figure D.3 illustrates the evaluation process.

The tree, as a whole, represents an assignment expression because the operator corresponding to the
tree’s stem is an =. Everything after the = in this assignment is a logical expression because the next operator,
proceeding up the tree, is a logical operator. This is where we start considering the rules for lazy evaluation.

Skip the right operand. Evaluation of a logical expression proceeds left to right, skipping some subex-
pressions along the way. We evaluate the left operand of the leftmost logical operator first. Depending on
the result, we evaluate or skip the right operand of that expression. In the example, we compute a < 10;
if that is true, we skip the rest of the expression, including the && operator. This case is illustrated in the
upper diagram in Figure D.3. The long double bars across the right branch of the OR operator are called
pruning marks; they are used to “cut off” the part of the tree that is not evaluated and show, graphically,
where skipping begins.

A natural comment at this point is, “But I thought that && should be executed first because it has
higher precedence.” Although precedence controls the construction of the parse tree, precedence simply is
not considered when the tree is evaluated. Because of its higher precedence, the && operator “captured” the
operand a >= 2 * b. However, logical expressions are evaluated left to right, so evaluation will start with
the || because it is to the left of the &&. Only if the left operand of the || operation is false, as in the
lower diagram of Figure D.3, will evaluation continue with the &&. In this case the left operand of the && is
false, meaning its right operand can be skipped. Graphically, evaluation starts at the stem of the logical

This is the parse tree and evaluation for the last expression in Figure D.1

/
=

 3.0
-63.
0
 t
 a

-21.0
 64.0
 n -=

17.
0
10.
0
 k

+= 7.0

85.0
 5.0
 m

*=

17.0

10.0

85.0

5.0
64.0

-21.
0

-63.
0

3.0

Figure D.2. A parse tree for assignment combinations.

D.2. MORE ON LAZY EVALUATION AND SKIPPING 679

We evaluate the expression y = a < 10 || a >= 2 * b && b != 1 twice. Note the “pruning marks” on
the tree and the curved lines around the parts of the expression that are skipped.

1. Evaluation with the values a = 7, b = anything: The || causes skipping

 T 1

 7
 a < 10 ||

 1
 ?
 y = 2 * b && a b>= 1 !=

 T 1

1

2. Evaluation with the values a = 17, b = 20: The && causes skipping

17
 a < 10 ||

 0
 ?
 y = *

 20
 b &&

 17
 a b>= 1 !=

 F 0

 F 0

0

 F 0
 17 40

 F 0

2

Figure D.3. Lazy evaluation.

expression and proceeds upward, doing the left side of each logical operator first and skipping the right side
where possible.

The whole right operand. When skipping happens, all the work on the right subtree is skipped, no
matter how complicated that portion of the expression is and no matter what operators are there. In our
first example, the left operand (which we evaluated) was a simple comparison but the right operand was
long and complex. As soon as we found that a < 10 was true, we put the answer 1 on the tree stem under
the ||, skipped all the work on the right side of the operator, and stored the value 1 in y. In Figure D.4,

We evaluate the expression y = a < 0 || a++ < b for a = -3. Note that the increment operation in the
right operand of || does not happen because the left operand is true.

 T
1

 y = a < 0 || a ++ < b

-3 1

 ?

 T
1

 1

Figure D.4. Skip the whole operand.

680 APPENDIX D. ADVANCED ASPECTS C OPERATORS

We evaluate the expression y = a < 0 || a > b && b > c || b > 10 for a = 3 and b = 17. Note that
skipping affects only the right operand of the &&; the parts of the expression not on this subtree are not
skipped.

 y = a < 0 || a > b
&&

 b > c || b > 10

 T 1

3 3 17 17 1
 ?

 F 0

 F 0 F 0

 T 1

 1

 F 0

Figure D.5. And nothing but the operand.

we also skip the rest of the computation after the comparison. However, in general, we might skip only a
portion of the remaining expression.

Sometimes, lazy evaluation can substantially improve the efficiency of a program. But while improving
efficiency is nice, a much more important use for skipping is to avoid evaluating parts of an expression that
would cause machine crashes or other kinds of trouble. For example, assume we wish to divide a number by x,
compare the answer to a minimum value, and do an error procedure if the answer is less than the minimum.
But it is possible for x to be 0 and that must be checked. We can avoid a division-by-0 error and do the
computation and comparison in one expression by using a guard before the division. A guard expression
consists of a test for the error-causing condition followed by the && operator. The entire C expression would
be

if (x != 0 && total / x < minimum) do_error();

Guarded expressions are useful in a wide variety of situations.

And nothing but the right operand. One common fallacy about C is that, once skipping starts,
everything in the expression to the right is skipped. This is simply not true; the skipping involves only
the right operand of the particular operator that triggered the skip. If several logical operators are in the
expression, we might evaluate branches at the beginning and end but skip a part in the middle. This is
illustrated by Figure D.5. In all cases, you must look at the parse tree to see what will be skipped.

D.2.1 Evaluation Order and Side-Effect Operators

A frequent cause of confusion is the relationship between logical operators, lazy evaluation, and operators
such as ++ that have side effects. When used in isolation, as at the end of Figure 4.23, the increment and
decrement operators are convenient and relatively free of complication. When side-effect operators are used
in long, complex expressions, they create the kind of complexity that fosters errors. If a side-effect operator
is used in the middle of a logical expression, it may be executed sometimes but skipped at other times. If
the operator is on the skipped subtree, as in Figure D.4, that operation is not performed and the value in
memory is not changed. This may be useful in a program, but it also is complex and should be avoided
by beginners. Just remember, the high precedence of the increment or decrement operator affects only the
shape of the parse tree; it does not cause the increment operation to be evaluated before the logical operator.

A second problem with side-effect operators relates to the order in which the parts of an expression
are evaluated. Recall that evaluation order has nothing to do with precedence order. We have stated that
logical operators are executed left to right. This also is true of two other kinds of sequencing operators: the
conditional operator ?...: and the comma, defined in the next section. Therefore, it may be a surprise to
learn that C is permitted to evaluate most other operators right-side first or left-side first, or inconsistently,

D.3. THE CONDITIONAL OPERATOR 681

a+=2;

a<b || a<c true

fals
e

 a+=10;a += (a<b || a<c) ? 10 :
2 ;

condition true
 value

false
value

conditional
expression

Figure D.6. A flowchart for the conditional operator.

whichever is convenient for the compiler. Technically, we say that the evaluation order for nonsequencing
operators is undefined . This flexibility in evaluation order permits an optimizing compiler to produce faster
code.

However, while the undefined evaluation order usually does not cause problems, it does lead directly to
one important warning: If an expression contains a side-effect operator that changes the value of a variable
V , do not use V anywhere else in the expression. The side effect could happen either before or after the
value of V is used elsewhere in the expression and the outcome is unpredictable. Writing the expression in
the order we want it executed won’t help; the C compiler does not have to conform to our order.

D.3 The Conditional Operator

There is only one ternary operator in C, the conditional operator . It has three operands and two operator
symbols (? and :). The conditional operator does almost the same thing as an if...else with one major
difference: if is a statement, it has no value; but ?...: is an operator and calculates and returns a value
like any other operator.

Evaluating a Conditional Operator. We can use either a flow diagram or a parse tree to diagram the
structure and meaning of a conditional operator; each kind of diagram is helpful in some ways. A flow
diagram (as in Figure D.6) depicts the order in which actions happen and shows us the similarity between a
conditional operator and an if statement, while a parse tree (Figure D.7) shows us how the value produced
by the conditional operator relates to the surrounding expression.

Making a flowchart for a conditional operator is somewhat problematical since flowcharts are for state-
ments and a conditional operator is only part of a statement. To represent the sequence of actions as we do
for the if statement, we have to include the rest of whatever statement contains the ?...: in the true and
false boxes. Figure D.6 shows how this can be done. The condition of the ?...: is the operand to the left
of the ?. This condition is written in the diamond-shaped box of the flowchart. The true clause is written
between the ? and the :. It is written, with the assignment operator on the left, in the true box. Similarly,
the false clause is written, with another copy of the assignment operator, in the false box.

Looking at the flowchart, we can see that the condition of a ?...: always is evaluated first. Then, based
on the outcome, either the true clause or the false clause is evaluated and produces a result. This result
then is used in the expression that surrounds the ?...:, in this case, a += statement.

Parsing a Conditional Operator. Since ?...: can be included in the middle of an expression, it is
helpful to know how to draw a parse tree for it. We diagram it with three upright parts (rather than two)
and a stem as shown in Figure D.7. Note that ?...: has very low precedence (with precedence = 3, it falls
just above assignment) so it usually can be used without putting parentheses around its operands. However,
parentheses are often needed around the entire unit. This three-armed treelet works naturally into the
surrounding expression. The main drawback of this kind of diagram is that it does not show the sequence
of execution as well as a flowchart.

682 APPENDIX D. ADVANCED ASPECTS C OPERATORS

k = j * (a < b ? a : b);

12
? 3 4 9 4 9

12

3

4 9

||
4

4
12

T 1 k = j * (a<b ? a : b);

condition true value false value

conditional operator

Figure D.7. A tree for the conditional operator.

Parsing a nested set of conditional operators is not hard. First parse the higher-precedence parts of the ex-
pression. Then start at the right (since the conditional operator associates from right to left) and look for the
pattern:
〈treelet〉 ? 〈treelet〉 : 〈treelet〉. Wherever you find three consecutive treelets separated only by a ? and a :,
bracket them together and draw a stem under the ?. Even if the expression is complex and contains more
than one ?, this method always works if the expression is correct. If the expression is incorrect, we will find
mismatched or misnested elements.

The sequence in which the parts of a conditional expression are evaluated or skipped is critical. We
convey this sequencing in a parse tree by placing a sequence-point circle under the ?. This indicates that the
condition (the leftmost operand) must be evaluated first. The outcome of the condition selects either the
true clause or the false clause and skips over the other. The skipping is conveyed by writing “prune marks”
on either the middle branch or the rightmost branch of the parse tree, whichever is skipped. The expression
on the remaining branch then is evaluated, and its value is written on the stem of the ?...: bracket and
propagated to the surrounding expression. Note that, even though evaluation starts by calculating a true

or a false value, the value of the entire conditional operator, in general, will not be true or false.
The sequence point under the ? has one other important effect. If the condition contains any postin-

crement operators, the increments must be done before evaluating the true clause or the false clause.
Therefore, it is “safe” to use postincrement in a condition.

Finally, remember that evaluation order is not the same as precedence order. For example, suppose we
are evaluating a conditional operator that prunes off a treelet containing some increment operators. Even
though increment has much higher precedence than the conditional operator, the increment operations will
not happen. This is why we must evaluate parse trees starting at the root, not the leaves. However, pruning
does not change the parse tree—it merely skips part of it. We must not erase the parts that are skipped or
try to get them out of the way by restructuring the whole diagram.

D.4 The Comma Operator

The comma operator, ,, in C is used to write two expressions in a context that normally allows for only one.
To be useful, the first of these expressions must have a side effect. For example, the following loop, which
sums the first n values in the array named data, uses the comma operator to initialize two variables, the
loop counter and the accumulator:

for (sum=0, k=n-1; k>=0; --k) sum += data[k];

The comma operator acts much like a semicolon with two important exceptions:

1. The program units before and after a comma must be non-void expressions. The units before and
after a semicolon can be either statements or expressions.

2. When we write a semicolon after an expression, it ends the expression and the entire unit becomes a
statement. When a comma is used instead, it does not end the expression but joins it to the expression
that follows to form a larger expression.

D.5. SUMMARY 683

3. The value of the right operand of the comma is propagated to the enclosing expression and may be
used in further computations.

D.5 Summary

A number of nonintuitive aspects of C semantics have arisen in this appendix that are responsible for
many programming errors. A programmer needs to be aware of these issues in order to use the language
appropriately:

• Use lazy evaluation. The left operand of a logical operator always is evaluated, but the right operand is
skipped whenever possible. Skipping happens when the value of the left operand is enough to determine
the value of the expression.

• Use guarded expressions. Because of lazy evaluation, we can write compound conditionals in which the
left side acts as a “guard expression” to check for and trap conditions that would cause the right side
to crash. The right side is skipped if the guard expression detects a “fatal” condition.

• Evaluation order is not the same as precedence order. High-precedence operators are parsed first but
they are not evaluated first and they may not be evaluated at all in a logical expression. Logical
expressions are executed left to right with possible skipping. An operator on a part of a parse tree
that is skipped will not be evaluated. Therefore, an increment operator may remain unevaluated even
though it has very high precedence and the precedence of the logical operators is low.

• Evaluation order is indeterminate. The only operators that are guaranteed to be evaluated left to right
are logical-AND, logical-OR, comma, and the conditional operator. With the other binary operators,
either the left side or the right side, may be evaluated first.

• Keep side-effect operators isolated. If you use an increment or decrement operator on a variable, V ,
you should not use V anywhere else in the same expression because the order of evaluation of terms
in most expressions is indeterminate. If you use V again, you cannot predict whether the value of V
will be changed before or after V is incremented.

• Figure D.8 summarizes the complex aspects of the C operators with side effects and sequence points.

684 APPENDIX D. ADVANCED ASPECTS C OPERATORS

Group Operators Complication

Assignment combinations +=, etc. These have low precedence and strict right-to-
left parsing, no matter which combination is
used.

Preincrement and predecrement ++, -- If we use a side-effect operator, we don’t use the
same variable again in the same expression.

Postincrement and postdecrement ++, -- Remember that the postfix operators return one
value for further use in the expression and leave
a different value in memory. Also, don’t use the
same variable again in the expression.

Logical &&, ||, ! Remember that negative integers are considered
true values, and separate and different rules ap-
ply for precedence order and evaluation order.

&& Use lazy evaluation when first operand is false.
|| Use lazy evaluation when first operand is true.

Conditional . . . ?. . . :. . . The expressions both before and after the colon
must produce values and those values must be
the same type.

Comma , This is rarely used except in for loops.

Figure D.8. Complications in use of side-effect operators.

Appendix E

Dynamic Allocation in C

E.0.1 Mass Memory Allocation

When a programmer cannot predict the amount of memory that will be needed by a program, the malloc()

function can be used at run time to allocate an array of bytes of the required size. Its prototype is

void* malloc(size_t sz);

where size_t is an unsigned integer type used by the local system to store the sizes of objects. Frequently,
size_t is defined by typedef to be the same as unsigned int or unsigned long. The value returned by
malloc() is a pointer to an array of bytes. For example, to allocate a single object and an array of objects
of type LumberT, from Chapter 13, we would write:

These functions are defined in the C standard library whose header is stdlib.h.

Prototype Action

void* malloc(size_t sz); Mass memory allocation. Return a pointer to
an uninitialized block of memory of the specified
size, sz bytes.

void* calloc(size_t n, size_t sz); Allocate and clear memory. Return a pointer
to an array of memory locations that have been
cleared to 0 bits. The array has n slots, each of
size sz bytes.

void free(void* pt); Recycle a memory block. Return to the oper-
ating system the block of memory that starts
at the address stored in pt. A block should
be freed after it no longer is needed by the
program.

void* realloc(void* pt, size_t sz); Mass memory reallocation. Given a pointer, pt,
to a memory block that was previously allo-
cated by malloc() or calloc(), and given a
new number of bytes, sz, that is different from
the current size of that block, resize the block to
the new length. If the new block cannot start
at the same location as the old one, this will
involve copying the entire contents of the old
block to the new one.

Figure E.1. Dynamic memory allocation functions.

685

686 APPENDIX E. DYNAMIC ALLOCATION IN C

lumber_t * newBoard;

lumber_t * newArray;

newBoard = malloc(sizeof(lumber_t));

newArray = malloc(20 * sizeof(lumber_t));

if (newBoard == NULL || newArray == NULL) {

fprintf(stderr, "Insufficient memory; aborting program\n");

exit(1);

}

Several C principles and techniques are combined in this typical code verbatim. We will now introduce and
explain these principles one at a time. The simplest way to call malloc() is with a literal constant, thus:

malloc(20)

This call allocates a memory area like the one diagrammed here:

void*

24

This memory is not initialized and still contains whatever data happened to be left over from a previous
program. The gray area in the diagram represents additional bytes that the C system sets aside to store the
total size of the allocated block (the size of a size_t value plus the size of the white area). The importance
of these bytes becomes clear when we discuss free() and realloc().

The type void* has not been discussed yet; it is a generic pointer type, which basically means “a pointer
to something, but we don’t know what.” It is used because malloc() must be able to allocate memory
for any type of object, and the function’s prototype must specify a return type compatible with all kinds
of pointers. Before the void pointer that is returned can be used, it must be either explicitly cast1 to
a specific pointer type, as shown next, or implicitly cast by storing it in a pointer variable, as shown in
Figure 16.19.

char*

24

Normally, malloc() is used to allocate space for a single object or an array of objects of some known
type. Since the number of bytes occupied by a type can vary from one implementation to another, we usually
do not call malloc() with a literal number as an argument. Instead, we use the sizeof operation to supply
the correct size of the desired type on the local system:

void*

8

malloc(sizeof(long))

Note that the return type is still void*, even though we use the type name long in the expression. The
sizeof expression inside the argument list does not affect the type of the pointer that is returned.

To allocate an array of objects, simply multiply the size of the base type by the number of array slots.
The next diagram illustrates this common usage, along with a cast that converts the void* value to a pointer
with the correct base type:

1The cast is not necessary, even to avoid warning messages, in ISO C. However, it was necessary in older versions of C and
is a style that many older programmers follow.

687

?

long*

?? ??24

(long*) malloc(5 * sizeof(long))

Although it is uncommon on modern systems, malloc() will fail if there is not enough available memory
to satisfy the request. In this case, its return value is NULL. It is good programming practice to include a
test for this condition and abort the program if it occurs, because no further meaningful processing can be
done. An example of this is shown in Figure 16.19.

E.0.2 Cleared Memory Allocation

The calloc() function allocates an array of memory and clears all of it to 0 bits. It has two parameters,
the length of the array and the size of one array element. No cast operator is needed here because the return
value is stored immediately in a pointer variable of the correct type. A typical call and its results are

lptr

00 0 0 024

long* lptr;
lptr = calloc(5, sizeof(long));

Even though malloc() and calloc() have different numbers of parameters, they essentially do the
same thing (except for initialization) and return the same type of result. Like malloc(), calloc() returns
a void* to the first memory address in the allocated area or returns NULL if not enough memory is available
to allocate a block of the specified size.

E.0.3 Freeing Dynamic Memory

In many applications, memory requirements grow and shrink repeatedly during execution. A program may
request several chunks of memory to accommodate the data during one phase then, after using the memory,
have no future need for it. Memory use and, sometimes, execution speed are made more efficient by recycling
memory; that is, returning it to the system to be reused for some other purpose. Dynamically allocated
memory can be recycled by calling free(), which uses the number of bytes in the gray area at the beginning
of each allocated block. This function returns the block of memory to the system’s memory manager, which
adds it to the supply of available storage and eventually reassigns it when the program again calls malloc()
or calloc(). The use of malloc() and free() are illustrated by the simulation program beginning in
Figure ??.

While each program is responsible for recycling its own obsolete memory blocks, a few warnings are in
order. A block should be freed only once; a second attempt to free the same block is an error. Similarly, we
use free() only to recycle memory areas created by malloc() or calloc(). Its use with a pointer to any
other memory area is an error. Another common mistake, described next, is to attempt to use a block after
it has been freed. These are serious errors that cannot be detected by the compiler and may cause a variety
of unpredictable results at run time.

A dangling pointer is one whose referent has been reclaimed by the system. Any attempt to use a
dangling pointer is wrong. Typically, this happens because multiple pointers often point at the same memory
block. When a block is first allocated, only one pointer points to it. However, that pointer might be copied

688 APPENDIX E. DYNAMIC ALLOCATION IN C

several times as it is passed into and out of functions and stored in data structures. If one copy of the pointer
is used to free the memory block, all other copies of that pointer become dangling references. A dangling
reference may seem to work at first, until the block is reallocated for another purpose. After that, two parts
of the program will simultaneously try to use the same storage and the contents of that location become
unpredictable.

Memory leaks. If you do not explicitly free the dynamically allocated memory, it will be returned to the
system’s memory manager when the program completes. So, forgetting to perform a free() operation is
not as damaging as freeing the same block twice.

However, some programs are intended to run for hours or days at a time without being restarted. In
such programs, it is much more important to keep free all dynamic memory when its useful lifetime is over.
The term memory leak us used to describe memory that should have been recycled but was not. Memory
leaks in major commercial software systems are common. The symptoms are a gradual slowdown in system
performance and, eventually, a system “lock up” or crash.

Thus, it is important for programmers to learn how to free memory that is no longer is needed, and it is
always good programming style to do so, especially when the memory is used for a short time by only one
function. Functions often are reused in a new context, they always should clean up after themselves.

E.0.4 Resizing an Array

By using the malloc() function, we can defer the decision about the length of an array until run time.
However, array space still must be allocated before the data are read and, perhaps, before we know how
many data items actually exist. Using malloc() to create an array makes a program more flexible, but
it still cannot accommodate an amount of data greater than expected. Fortunately, the C library provides
an additional function to solve the problem of too little space for the data. The function that resizes the
data array is called realloc(). When given a pointer to a memory block that was created by malloc() or
calloc(), it will reallocate the array, making it either larger or smaller, according to the newly requested
size.

Making an array smaller causes no physical or logical difficulties. The excess space is taken off the end
of the original area and returned to the system for recycling. The length count that is kept in the gray area
at the head of the block is adjusted appropriately. For example, assume we have the following memory block
before reallocation:

lptr

29135 109 38 73 24

Then we give the reallocation command lptr = realloc(lptr, 3 * sizeof(long));

After reallocation, the picture becomes

8 73

freed memorylptr

 29135 109 16

Making an array longer causes a problem because the space at the end of the array already may be in
use for some other purpose. The C system keeps track of the length of every area created by malloc() or
calloc() and also knows what storage is free. If there is enough empty space after the end of an array,
that storage area easily and efficiently can be added onto the end. This is what realloc() does, if possible.
When the space after the array is unavailable, realloc() allocates a new area that is large enough, then
copies the data from the old area into the new one, and finally frees the old area.

689

For example, before reallocation, we have

lptr

 29135 109 38 73 24

After the reallocation command lptr = realloc(lptr, 7 * sizeof(long)); we have

lptr

 29135 109 38 73 32 ?? ??

Therefore, realloc() always succeeds unless the memory is full, but the reallocated array might start at a
new memory address. The function returns the starting address of the current memory block, whether or
not it has been changed. The program must store this address so it can access the storage.

Copying an entire array of information from one memory block to another is a costly operation and
should be avoided if possible. It would not be a good idea to reallocate an array many times in a row, adding
only a small number of slots each time. For this reason, successive calls on realloc() normally double the
length of the array or at least add a substantial number of slots. An application of realloc() is given in
the simulation program in Section 17.4.

Finally, realloc() is inappropriate for applications that have many pointers pointing into the dynamic
array. Since the memory location of an array might change when it is reallocated, any pointers previously set
to point at parts of the array are left dangling. If there are only a few such pointers, new memory addresses
sometimes can be computed and the pointers reconnected properly. If not, realloc() should not be used.

690 APPENDIX E. DYNAMIC ALLOCATION IN C

Appendix F

The Standard C Environment

This appendix contains a list of standard ISO C symbols, #include files, and libraries. The libraries that
have been used in this text are described by listing prototypes for all functions in the library. Each function is
described briefly if it was used in this text or is likely to be useful to a student in the first two years of study.
Alternative and traditional functions have not been listed. Readers who need more detailed information
about the libraries should consult a standard reference book or the relevant UNIX manual page.

F.1 Built-in Facilities

These symbols are macros that are identified at compile time and replaced by current information, as
indicated. If included in a source file, the relevant information will be inserted into that file.

• __DATE__ is the date on which the program was compiled.

• __FILE__ is the name of the source file.

• __LINE__ is the current line number in the source file.

• __STDC__ is defined if the implementation conforms to the ISO C standard.

• __TIME__ is the time at which the program was compiled and should remain constant throughout the
compilation.

F.2 Standard Files of Constants

We list the standard #include files that define the properties of numbers on the local system.

limits.h. Defines the maximum and minimum values in each of the standard integer types, as implemented
on the local system. The constants defined are

• Number of bits in a character: CHAR_BIT.

• Type character: CHAR_MAX, CHAR_MIN.

• Signed and unsigned characters: SCHAR_MAX, SCHAR_MIN, UCHAR_MAX.

• Signed and unsigned short integers: SHRT_MAX, SHRT_MIN, USHRT_MAX.

• Signed and unsigned integers: INT_MAX, INT_MIN, UINT_MAX.

• Signed and unsigned long integers: LONG_MAX, LONG_MIN, ULONG_MAX.

691

692 APPENDIX F. THE STANDARD C ENVIRONMENT

Name FLT_constant value DBL_constant value

RADIX 2
EPSILON 1.19209290E−07F 2.2204460492503131E−16
DIG 6 15
MANT_DIG 24 53
MIN 1.17549435E−38F 2.2250738585072014E−308
MIN_EXP −125 −1021
MIN_10_EXP −37 −307
MAX 3.40282347E+38F 1.7976931348623157E+308
MAX_EXP 128 1024
MAX_10_EXP 38 308

Figure F.1. Minimum values.

float.h. Defines the properties of each of the standard floating-point types, as implemented on the local
system. The constants defined are

• The value of the radix: FLT_RADIX.

• Rounding mode: FLT_ROUNDS.

• Minimum x such that 1.0 + x 6= x: FLT_EPSILON, DBL_EPSILON,

LDBL_EPSILON.

• Decimal digits of precision: FLT_DIG, DBL_DIG, LDBL_DIG.

• Number of radix digits in the mantissa: FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.

• Minimum normalized positive number: FLT_MIN, DBL_MIN, LDBL_MIN.

• Minimum negative exponent for a normalized number: FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.

• Minimum power of 10 in the range of normalized numbers:

FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.

• Maximum representable finite number: FLT_MAX, DBL_MAX, LDBL_MAX.

• Maximum exponent for representable finite numbers: FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.

• Maximum power of 10 for representable finite numbers:

FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.

IEEE floating-point standard. The minimum values of the C constants that conform to the IEEE standard
are listed in Figure G.1.

F.3 The Standard Libraries and main()

F.3.1 The Function main()

The main() function is special in two ways. First, every C program must have a function named main(),
and that is where execution begins. A portion of a program may be compiled without a main() function,
but linking will fail unless some other module does contain main().

The other unique property of main() is that it has two official prototypes and is frequently used with
others. The two standardized prototypes are:

• int main(void);

• int main(int argc, char* argv[]);

F.3. THE STANDARD LIBRARIES AND MAIN() 693

The int return value is intended to return a status code to the system and is needed for interprocess
communication in complex applications. However, it is irrelevant for a simple program. In this case, non-
standard variants, such as int main(void), can be used and will work properly. Having no return values
works because most systems do not rely on a status code being returned, and simple programs have no
meaningful status to report.

F.3.2 Characters and Conversions

Header file. <ctype.h>.

Functions.

• int isalnum(int ch);

Returns true if the value of ch is a digit (0–9) or an alphabetic character (A–Z or a–z). Returns false
otherwise.

• int isalpha(int ch);

Returns true if the value of ch is an alphabetic character (A–Z or a–z). Returns false otherwise.

• int islower(int ch);

Returns true if the value of ch is a lower-case alphabetic character (a–z). Returns false otherwise.

• int isupper(int ch);

Returns true if the value of ch is an upper-case alphabetic character (A–Z). Returns false otherwise.

• int isdigit(int ch);

Returns true if the value of ch is a digit (0–9). Returns false otherwise.

• int isxdigit(int ch);

Returns true if the value of ch is a hexadecimal digit (0–9, a–f, or A–F). Returns false otherwise.

• int iscntrl(int ch);

Returns true if the value of ch is a control character (ASCII codes 0–31 and 127). Returns false

otherwise. The complementary function for a standard ASCII implementation is isprint().

• int isprint(int ch);

Returns true if the value of ch is an ASCII character that is not a control character (32–126). Returns
false otherwise.

• int isgraph(int ch);

Returns true if the value of ch is a printing character other than space (33–126). Returns false

otherwise.

• int isspace(int ch);

Returns true if the value of ch is a whitespace character (horizontal tab, carriage return, newline,
vertical tab, formfeed, or space). Returns false otherwise.

• int ispunct(int ch);

Returns true if the value of ch is a printing character but not space or alphanumeric. Returns false

otherwise.

• int tolower(int ch);

If the value of ch is an upper-case character, returns that character converted to lower-case (a–z).
Returns the letter unchanged otherwise.

• int toupper(int ch);

If the value of ch is a lower-case character, returns that character converted to upper-case (A–Z).
Returns the letter unchanged otherwise.

694 APPENDIX F. THE STANDARD C ENVIRONMENT

F.3.3 Mathematics

Header file. <math.h>.

Constant. HUGE_VAL is the a special code that represents a value larger than the largest legal floating-point
value. On some systems, if printed, it will appear as infinity.

Trigonometric functions. These functions all work in units of radians:

• double sin(double);

double cos(double);

double tan(double);

These are the mathematical functions sine, cosine, and tangent.

• double asin(double);

double acos(double);

These functions compute the principal values of the mathematical arc sine and arc cosine functions.

• double atan(double x);

double atan2(double y, double x);

The atan() function computes the principal value of the arc tangent of x, while atan2() computes
the principal value of the arc tangent of y/x.

• double sinh(double);

double cosh(double);

double tanh(double);

These are the hyperbolic sine, cosine, and tangent functions.

Logarithms and powers.

• double exp(double x);

Computes the exponential function, ex, where e is the base of the natural logarithms.

• double log(double x);

double log10(double x);

These are the natural logarithm and base-10 logarithm of x.

• double pow(double x, double y);

Computes xy. It is an error if x is negative and y is not an exact integer or if x is 0 and y is negative
or 0.

• double sqrt(double x);

Computes the nonnegative square root of x. It is an error if x is negative.

Manipulating number representations.

• double ceil(double d);

The smallest integral value greater than or equal to d.

• double floor(double d);

The largest integral value less than or equal to d.

• double fabs(double d);

The absolute value of d. Note: abs() is defined in <stdlib.h>.

• double fmod(double x, double y);

The answer, f, is less than y, has the same sign as x, and f+y*k approximately equals x for some
integer k. It may return 0 or be a run-time error if y is 0.

F.3. THE STANDARD LIBRARIES AND MAIN() 695

• double frexp(double x, int* nptr);

Splits a nonzero x into a fractional part, f , and an exponent, n, such that |f | is between 0.5 and 1.0
and x = f × 2n. The function’s return value is f , and n is returned through the pointer parameter. If
x is 0, both values will be 0.

• double ldexp(double x, int n);

The inverse of frexp(); it computes and returns the value of x× 2n.

• double modf(double x, double* nptr);

Splits a nonzero x into a fractional part, f , and an integer part, n, such that |f | is less than 1.0 and
x = f + n. Both f and n have the same sign as x. The function’s return value is f and n is returned
through the pointer parameter.

F.3.4 Input and Output

Header file. <stdio.h>.

Predefined streams. stdin, stdout, stderr.

Constants.

• EOF signifies an error or end-of-file during input.

• NULL is the zero pointer.

• FOPEN_MAX is the number of streams that can be open simultaneously (ISO C only).

• FILENAME_MAX is the maximum appropriate length for a file name (ISO C only).

Types. FILE, size_t, fpos_t.

Stream functions.

• FILE* fopen(const char* filename, const char* mode);

int fclose(FILE* str);

For opening and closing programmer-defined streams.

• int fflush(FILE* str);

Sends the contents of the stream buffer to the associated device. It is defined only for output streams.

• FILE* freopen(const char* filename, const char* mode,

FILE* str);

Reopens the specified stream for the named file in the new mode.

• int feof(FILE* str);

Returns true if an attempt has been made to read past the end of the stream str. Returns false

otherwise.

• int ferror(FILE* str);

Returns true if an error occurred while reading from or writing to the stream str.

• void clearerr(FILE* str);

Resets any error or end-of-file indicators on stream str.

• int rename(const char* oldname, const char* newname);

Renames the specified disk file.

• int remove(char* filename);

Deletes the named file from the disk.

696 APPENDIX F. THE STANDARD C ENVIRONMENT

Input functions.

• int fgetc(FILE* str);

int getc(FILE* str);

These functions read a single character from the stream str.

• int getchar(void);

Reads a single character from the stream stdin.

• int ungetc(int ch, FILE* str);

Puts a single character, ch, back into the stream str.

• char* fgets(char* ar, int n, FILE* str);

Reads up to n-1 characters from the stream str into the array ar. A newline character occurring
before the nth input character terminates the operation and is stored in the array. A null character is
stored at the end of the input.

• char* gets(char* ar);

Reads characters from the stream stdin into the array ar until a newline character occurs, then stores
a null character at the end of the input. The newline is not stored as part of the string.

• int fscanf(FILE* str, const char* format, ...);

Reads input from stream str under the control of the format. It stores converted values in the addresses
on the variable-length output list that follows the format.

• int scanf(const char* format, ...);

Same as fscanf() to stream stdin.

• int sscanf(char* s, const char* format, ...);

Same as fscanf() except that the input characters come from the string s instead of from a stream.

• size_t fread(void* ar, size_t size, size_t count,

FILE* str);

Reads a block of data of size times count bytes from the stream str

into array ar.

Output functions.

• int fputc(int ch, FILE* str);

int putc(int ch, FILE* str);

These functions write ch to stream str.

• int putchar(int ch);

Writes a single character, ch, to the stream stdout.

• int fputs(const char* s, FILE* str);

Writes s to stream str.

• int puts(const char* s);

Writes string s and a newline character to the stream stdout.

• int fprintf(FILE* str, const char* format, ...);

Writes values from the variable-length output list to the stream str under the control of the format.

• int printf(const char* format, ...);

Writes values from the variable-length output list to the stream stdout under the control of the format.

• int sprintf(char* ar, const char* format, ...);

Writes values from the variable-length output list to the array ar under the control of the format.

• size_t fwrite(const void* ar, size_t size,

size_t count, FILE* str);

Writes a block of data of size times count bytes from the array ar into the stream str.

F.3. THE STANDARD LIBRARIES AND MAIN() 697

Advanced functions. The following functions are beyond the scope of this text; their prototypes are
listed without comment.

• int setvbuf(FILE* str, char* buf, int bufmode,

size_t size);

• void setbuf(FILE* str, char* buf);

• Buffer mode constants BUFSIZ, _IOFBF, _IOLBF, _IONBF

• int fseek(FILE* str, long int offset, int from);

• long int ftell(FILE* str);

• void rewind(FILE* str);

• Seek constants SEEK_SET, SEEK_CUR, SEEK_END

• int fgetpos(FILE* str, fpos_t* pos);

• int fsetpos(FILE* str, const fpos_t* pos);

• void perror(const char* s);

• int vfprintf(FILE* str, const char* format,

va_list arg);

• int vprintf(const char* format, va_list arg);

• int vsprintf(char* ar, const char* format,

va_list arg);

• FILE* tmpfile(void);

• char* tmpnam(char* buf); and constants L_tmpnam, TMP_MAX

F.3.5 Standard Library

Header file. <stdlib.h>.

Constants.

• RAND_MAX: the largest value that can be returned by rand().

• EXIT_FAILURE: signifies unsuccessful termination when returned by main() or exit().

• EXIT_SUCCESS: signifies successful termination when returned by main() or exit().

Typedefs. div_t and ldiv_t, ISO C only, the types returned by the functions div() and ldiv(), respec-
tively. Both are structures with two components, quot and rem, for the quotient and remainder of an integer
division.

General functions.

• int abs(int x);

long labs(long x);

These functions return the absolute value of x. Note: fabs(), for floating-point numbers, is defined in
<math.h>.

• div_t div(int n, int d);

ldiv_t ldiv(long n, long d);

These functions perform the integer division of n by d. The quotient and remainder are returned in a
structure of type div_t or ldiv_t.

698 APPENDIX F. THE STANDARD C ENVIRONMENT

• void srand(unsigned s);

int rand(void);

The function srand() is used to initialize the random-number generator and should be called before
using rand(). Successive calls on rand() return pseudo-random numbers, evenly distributed over the
range 0...RAND_MAX.

• void* bsearch(const void* key, const void* base,

size_t count, size_t size, int (*compar)

(const void* key, const void* value));

Searches the array starting at base for an element that matches key. A total of count elements are in
the array. It uses *compar() to determine whether two items match. See the text for explanation.

• int qsort(void* base, size_t count, size_t size,

int (*compar)(const void* e1, const void* e2));

Quicksorts the elements of the array starting at base and continuing for count elements. It uses
*compar() to compare the elements. See the text for explanation.

Allocation functions.

• void* malloc(size_t size);

Dynamically allocates a memory area of size bytes and returns the address of the beginning of this
area.

• void* calloc(size_t count, size_t size);

Dynamically allocates a memory area of count times size bytes. It clears all the bits in this area to
0 and returns the address of the beginning of this area.

• void free(void* pt);

Returns the dynamically allocated area *pt to the system for future reuse.

• void* realloc(void* pt, size_t size);

Resizes the dynamically allocated area *pt to size bytes. If this is larger than the current size and
the current allocation area cannot be extended, it allocates the entire size bytes elsewhere and copies
the information from *pt.

Control functions.

• void exit(int status);

Flushes all the buffers, closes all the streams, and returns the status code to the operating system.

• int atexit(void (*func)(void));

ISO C only. The function (*func)() is called when exit() is called or when main() returns.

String to number conversion functions.

• double strtod(const char* str, char** p);

double atof(const char* str);

The function strtod() converts the ASCII string str to a number of type double and returns that
number. It leaves *p pointing at the first character in str that was not part of the number. The
function atof() does the same thing but does not return a pointer to the first unconverted character.
The preferred function is strtod(); atof() is deprecated in the latest version of the standard.

• long strtol(const char* str, char** p, int b);

The function strtol() converts the ASCII string str to a number of type long int expressed in base
b and returns that number. It leaves *p pointing at the first character in str that was not part of the
number. This function is preferred over both atoi() and atol(), which are deprecated in the latest
version of the standard.

F.3. THE STANDARD LIBRARIES AND MAIN() 699

• int atoi(const char* str);

long atol(const char* str);

The function atoi() converts the ASCII string str to a number of type int expressed in base 10 and
returns that number; atol() converts to type long int. The function strtol() is preferred over both
of these, which are deprecated in the latest version of the standard.

• unsigned long strtoul(const char* str, char** p,

int b);

Converts the ASCII string str to a number of type long unsigned int expressed in base b and returns
that number. It leaves *p pointing at the first character in str that was not part of the number.

Advanced functions. The following functions are beyond the scope of this text; their prototypes are
listed without comment.

• void abort(void);

• char* getenv(const char* name);

• int system(const char* command);

F.3.6 Strings

Header file. <string.h>.

String manipulation.

• char* strcat(char* dest, const char* src);

Appends the string src to the end of the string dest, overwriting its null terminator. We assume that
dest has space for the combined string.

• char* strncat(char* dest, const char* src, size_t n);

This function is the same as strcat() except that it stops after copying n characters, then writes a
null terminator.

• char* strcpy(char* dest, const char* src);

Copies the string src into the array dest. We assume that dest has space for the string.

• char* strncpy(char* dest, const char* src, size_t n);

Copies exactly n characters from src into dest. If fewer than n characters are in src, null characters
are appended until exactly n have been written.

• int strcmp(const char* p, const char* q);

Compares string p to string q and returns a negative value if p is lexicographically less than q, 0 if
they are equal, or a positive value if p is greater than q.

• int strncmp(const char* p, const char* q, size_t n);

This function is the same as strcmp() but returns after comparing at most n characters.

• size_t strlen(const char* s);

Returns the number of characters in the string s, excluding the null character on the end.

• char* strchr(const char* s, int ch);

Searches the string s for the first (leftmost) occurrence of the character ch. Returns a pointer to that
occurrence if it exists; otherwise returns NULL.

• char* strrchr(const char* s, int ch);

Searches the string s for the last (rightmost) occurrence of the character ch. Returns a pointer to that
occurrence if it exists; otherwise returns NULL.

• char* strstr(const char* s, const char* sub);

Searches the string s for the first (leftmost) occurrence of the substring sub. Returns a pointer to the
first character of that occurrence if it exists; otherwise returns NULL.

700 APPENDIX F. THE STANDARD C ENVIRONMENT

Memory functions.

• void* memchr(const void* ptr, int val, size_t len);

Copies val into len characters starting at address ptr.

• int memcmp(const void* p, const void* q, size_t n);

Compares the first n characters starting at address p to the first n characters starting at q. Returns a
negative value if p is lexicographically less than q, 0 if they are equal, or a positive value if p is greater
than q.

• void* memcpy(void* dest, const void* src, size_t n);

Copies n characters from src into dest and returns the address src. This may not work correctly for
overlapping memory regions but often is faster than memmove().

• void* memmove(void* dest, const void* src, size_t n);

Copies n characters from src into dest and returns the address src. This works correctly for overlap-
ping memory regions.

• void* memset(void* ptr, int val, size_t len);

Copies val into len characters starting at address ptr.

Advanced functions. The following functions are beyond the scope of this text; their prototypes are
listed without comment:

• int strcoll(const char* s1, const char* s2);

• size_t strcspn(const char* s, const char* set);

• char* strerror(int errnum);

• char* strpbrk(const char* s, const char* set);

• size_t strspn(const char* s, const char* set);

• char* strtok(char* s, const char* set);

• size_t strxfrm(char* d, const char* s, size_t len);

F.3.7 Time and Date

Header file. <time.h>.

Constants. CLOCKS_PER_SEC is the number of clock “ticks” per second of the clock used to record process
time.

Types.

• time_t;

The integer type used to represent times on the local system.

• clock_t;

The arithmetic type used to represent the process time on the local system.

• struct tm;

A structured representation of the time containing the following fields, all of type int: tm_sec (seconds
after the minute), tm_min (minutes after the hour), tm_hour (hours since midnight, 0–23), tm_mday
(day of the month, 1–31), tm_mon (month since January, 0–11), tm_year (years since 1900), tm_wday
(day since Sunday, 0–6), tm_yday (day since January 1, 0–365), tm_isdst (daylight savings time flag,
>0 if DST is in effect, 0 if not, <0 if unknown).

F.4. LIBRARIES NOT EXPLORED 701

Functions.

• clock_t clock();

Returns an approximation to the processor time used by the current process, usually expressed in
microseconds.

• time_t time(time_t* tptr);

Reads the system clock and returns the time as an integer encoding of type time_t. Returns the same
value through the pointer parameter.

• char* ctime(const time_t* tptr);

char* asctime(const struct tm* tptr);

These functions return a pointer to a string containing a printable form of the date and time: "Sat

Sep 14 13:12:27 1999\n". The argument to ctime() is a pointer to a time_t value such as that
returned by time(). The argument to asctime() is a pointer to a structured calendar time such as
that returned by localtime() or gmtime().

• struct tm* gmtime(const time_t* tp);

struct tm* localtime(const time_t* tp);

These functions convert a time represented as a time_t value to a structured representation. The
gmtime() returns Greenwich mean time; the localtime() converts to local time, taking into account
the time zone and Daylight Savings Time.

• time_t mktime(struct tm* tp);

Converts a time from the struct tm representation to the integer time_t representation.

• double difftime(time_t t1, time_t t2);

Returns the result of t1-t2 in seconds as a value of type double.

• size_t strftime(char* s, size_t max,

const char* format, const struct tm* tp);

size_t wcsftime(w_char* s, size_t max,

const w_char* format, const struct tm* tp);

The function strftime() formats a single date and time value specified by tp, storing up to maxsize

characters into the array s under control of the string format. The function wcsftime() does the
same thing with wide characters.

F.3.8 Variable-Length Argument Lists

This library, known as the vararg facility, permits programmers to define functions with variable-length
argument lists. This is an advanced feature of C and beyond the scope of this text. The list of functions is
included here because this facility was used to define say() and fatal().

Header file. <stdarg.h>.

Type. va_list.

Functions. va_start, va_arg, and va_end.

F.4 Libraries Not Explored

Each of the remaining libraries is named and the names of functions and constants in them are listed without
prototypes or explanation. This list can serve as a starting point for further exploration of C.

Errors. Header file: <errno.h>. Constants: EDOM and ERANGE.
Variable: errno.

702 APPENDIX F. THE STANDARD C ENVIRONMENT

Nonlocal jumps. Header file: <setjmp.h>. Type: jmpbuf.
Functions: setjmp and longjmp.

Signal handling. Header file: <signal.h>. Type: sig_atomic_t. Constants: SIG_DFL, SIG_ERR, SIG_IGN,
SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM. Functions: signal, raise.

Control. Header file: <assert.h>. Constant: NDEBUG. Function: assert.

Localization. Header file: <locale.h>. Constants: LC_ALL, LC_TIME, LC_CTYPE, LC_MONETARY, LC_NUMERIC,
LC_COLLATE, and NULL. Type: struct lconv. Functions: localeconv and setlocale.

Wide-character handling. Header file: <wctype.h>. Functions: iswctype, towctrans, WEOF, wint_t,
wctrans, wctrans_t, wctype, and wctype_t. In addition, this library contains wide analogs of all the
functions in the ctype library, all with a w as the third letter of the name: iswupper, towlower, and so on.

Extended multibyte to wide-character conversion. Header file: <wchar.h>. Functions: btowc, mbrlen,
mbrtowc, mbstate_t, wcrtomb, mbsinit, mbsrtowcs, wcsrtombs, wcstod, wcstol, wcstoul, and wctob.

Wide-string handling. Header file: <wchar.h>. Functions: wcscat, wcschr, wcscmp, wcscoll, wcscpy,
wcscspn, wcserror, wcslen, wcsncat, wcsncmp, wcsncpy, wcspbrk, wcsrchr, wcsspn, wcsstr, wcstok,
wcsxfrm, wmemchr, wmemcmp, wmemcpy, wmemmove, and wmemset.

Wide-character input and output. Header file: <wchar.h>. Functions: fwprintf, fwscanf, wprintf,
wscanf, swprintf, swscanf, vfwprintf, vwprintf, vwsprintf, fgetwc, fgetws, fputwc, fputws, getwc,
getwchar, putwc, putwchar, and ungetwc.

