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Chapter 4

Expressions

Computation is central to computer programming. We discuss how the usual mathematical operations can
be applied to variables and introduce the concepts of precedence and associativity that govern the meaning
of an expression in both mathematical notation and in C. Parse trees are introduced to help explain the
structure and meaning of expressions.

Finally, declarations, expressions, and parse trees are brought together in a discussion of program design
and testing methodology. We propose a problem, develop a program for it, analyze how we should test the
program, and show how to use data type rules and parse trees to find and correct an error in the coding.

4.1 Expressions and Parse Trees

An expression is like an entire sentence in English. It specifies how verbs (operators and functions) should
be applied to nouns (variables and constants) to produce a result. In this section, we consider the rules for
building expressions out of names, operators, and grouping symbols and how to interpret the meanings of
those expressions. We use a kind of diagram called a parse tree to see the structure of an expression and to
help us understand its meaning.

4.1.1 Operators and Arity

C has several classes of operators in addition to those that perform arithmetic on numbers. These include
comparison and logical operators, bit-manipulation operators, and a variety of operators that are found in
C but not in other languages. Each group of operators is intended for use on a particular type of object.
Many will be introduced in this chapter; others will be discussed in detail in the chapters that introduce the
relevant data types. For example, operators that work specifically with integers are explained in Chapter
7. Operators that deal with pointers, arrays, and structured types are left for later chapters. Issues to
be considered with each class of operator include the type of data on which it operates, its precedence
and associativity, any unusual rules for evaluation order, and any unexpected aspects of the meaning of an
operator.

An operand is an expression whose value is an input to an operation. Operators are classed as unary,
binary, or ternary according to the number of operands each takes. A binary operator has two operands
and is written between those operands. For example, in the expression (z/4), the / sign is a binary operator
and z and 4 are its operands. We also say that a binary operator has arity = 2. The arity of an operator
is the number of operands it requires.

A unary operator (arity = 1), such as - (negate), has one operand. Most unary operators are prefix
operators; that is, they are written before their operand. Two unary operators, though, also may be written
after the operand, as postfix operators. There is only one ternary operator (arity = 3), the conditional
expression. The two parts of this operator are written between its three operands.

75



76 CHAPTER 4. EXPRESSIONS

4.1.2 Precedence and Parentheses

Many expressions contain more than one operator. In such expressions, we need to know which operands go
with which operators. For example, if we write

13/5 + 2

it is important to know whether this means

(13/5) + 2 or 13/(5 + 2)

because the two expressions have different answers.

Using parentheses. Parentheses are neither operators nor operands; called grouping symbols, they can
be used to control which operands are associated with each operator. Parentheses can be used to specify
whatever meaning we want; a fully parenthesized expression has only one interpretation. If we do not write
parentheses, C uses a default interpretation based on the rules for precedence and associativity. This default
is one of the most common sources for errors in writing expressions.

The precedence table and the default rules. Experienced programmers use parentheses only to em-
phasize the meaning of an expression or achieve a meaning different from the default one. They find it a
great convenience to be able to omit parentheses most of the time. Further, using parentheses selectively
makes expressions more readable. However, if you use the default precedence, anyone reading or writing
your program must be familiar with the rules to understand the meaning of the code.

The precedence and associativity of each operator are defined by the C precedence table, given in Ap-
pendix B. The rules in this table describe the meaning of any unparenthesized part of an expression.
Precedence defines the grouping order when different operators are involved, and associativity defines
the order of grouping among adjacent operators that have the same precedence. The concepts and rules for
precedence and associativity are simple and mechanical. They can be mastered even if you do not under-
stand the meaning or use of a particular operator. The portion of the precedence table that covers the
arithmetic operators is repeated in Figure 4.1, with a column of examples added on the right. We use it in
the following discussion to illustrate the general principles.

Precedence. In the precedence table, the C operators are listed in order of precedence; the ones at the top
are said to have high precedence; those at the bottom have low precedence.1 As a convenience, the precedence
classes in C also have been numbered. There are 17 different classes. (The higher the number, the higher is
the precedence.) Operators that have the same precedence number are said to have equal precedence. You
will want to mark Appendix B so that you can refer to the precedence table easily; until all the operators
are familiar, you will need to consult it often.

Associativity. The rule for associativity governs consecutive operators of equal precedence, such as those in
the expression (3 * z / 10). All these operators with the same precedence will have the same associativity,
which is either left to right or right to left.2 With left-to-right associativity, the leftmost operator is parsed
before the ones to its right. (The process of parsing is explained next.) With right-to-left associativity, the
rightmost operator is parsed first. In the expression (3 / z * 10 % 3), the three operators have the same
precedence and all have left-to-right associativity. We therefore parse the / first and the * second, giving
this result: (((3 / z) * 10) % 3). The parse of this expression is diagrammed in Figure 4.3.

Almost all the unary operators have the same precedence (15) and are written before the operand (that
is, in prefix position). The chart shows that they associate right to left. Therefore, in the expression (-

- x), the second negation operation is parsed first and the leftmost negation operation second, giving this
result: (- (- x)). Restated simply, this rule states “the prefix operator written closest to the operand is
parsed first.”

1Most of the C operators will be described in this chapter; others will be explained in later chapters.
2The term left-to-right associativity is often shortened to left associativity and right-to-left to right.
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Arity Symbol Meaning Precedence Associativity Examples

Unary - Negation 15 right to left -1, -temp

+ No action 15 " +1, +x

Binary * Multiplication 13 left to right 3 * x

/ Division 13 " x / 3.0

% Integer remainder (modulus) 13 " k % 3

+ Addition 12 " x + 1, x + y

- Subtraction 12 " x - 1, 3 - y

Figure 4.1. Arithmetic operators.

4.1.3 Parsing and Parse Trees

Parsing is the process of analyzing the structure of a statement. The compiler does this when it translates the
code, and human beings do it when reading the code. One way to parse an expression is to write parentheses
where the precedence and associativity rules would place them by default. This process is easy enough to
carry out but can become visually confusing.

An easier way to parse is to draw a parse tree. The parse tree shows the structure of the expression
and is closely related to what the C compiler does when it translates the expression. A parse tree helps us
visualize the structure of an expression. It also can be used to understand the order in which operators will
be executed by C, which, unfortunately, is not the same as their order of precedence.3

To parse an operator, either write parentheses around it and its operands or draw a tree bracket with
one branch under each operand and the stem under the operator. A simple, two-pronged bracket is used for
most binary operators. The bracketed or parenthesized unit becomes a single operand for the next operator,
as shown in Figures 4.2 and 4.3. Brackets or parenthesized units never collide or cross each other. Figure 4.2
shows a parse tree that uses the precedence rules, and Figure 4.3 shows an expression where all operators
have equal precedence and the rule for associativity is used. The steps in parsing an arbitrary expression
are these:

1. Write the expression at the top, leaving some space between each operand and operator.

2. Parse parenthesized subexpressions fully before looking at the surrounding expression.

3. If there are postfix unary operators (-- or ++), do them first. These are mentioned here for completeness
and will be explained later in the chapter.

3Complications of evaluation order are covered in Sections 4.3 and 4.6.3 and Appendix D.

The * operator has highest precedence so it was parsed first and it “captured” the middle operand. The
assignment has lowest precedence so it was parsed last. The arrowhead on the assignment operator bracket
indicates that the value of x is updated with the right operand value.

 x= m+ k*y
 x= m+(k*y)
 x=(m+(k*y))
(x=(m+(k*y)))

*+m  x  = k y

Figure 4.2. Applying precedence.
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In the diagram, three brackets are used to show which operands go with each of the operators in the
expression (3 / z * 10 % 3). These operators have equal precedence, so they are parsed according to the
associativity rule for this group of operators, which is left to right.

 z * 10/3 30%  3 / z  * 10  % 3
 (3 / z) * 10  % 3

 ((3 / z) * 10) % 3
 (((3 / z) * 10) % 3)

Figure 4.3. Applying associativity.

4. Next, find the prefix unary operators, all of which associate right to left. Start at the rightmost and
bracket each one with the following operand, drawing a stem under the operator. (An operand may
be a variable, a literal, or a previously parsed unit.)

5. Now look at the unparsed operators in the expression and look up the precedence of each one in the
table. Parse the operators of highest precedence first, grouping each with its neighboring operands.
Then go on to those of lower precedence. For neighboring operators of the same precedence, find their
associativity in the table. Proceeding in the direction specified by associativity, bracket each operator
with the two adjacent operands.

6. Repeat this process until you finish all of the operators.

Figure 4.4 shows an example of parsing an expression where all the rules are applied: grouping, associativity,
and precedence.

Notes on Figure 4.4. Applying the parsing rules. The steps in drawing this parse tree are as follows:

1. Subexpressions in parentheses must be parsed first. Within the parentheses, the prefix operator - is
parsed first. Then the lower precedence operator, +, uses this result as its left operand to complete the
parsing in the parentheses.

2. The * and / are the operators with the next highest precedence; we parse them left to right, according
to their associativity rule.

y= * /2zx +(- z )3 -

Figure 4.4. Applying the parsing rules.
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All these operators associate right to left. The left operand of each must be a variable or storage location.
The parse diagram for a combination operator is shown in Figure 4.6

Symbol Example Meaning Precedence

= x = 2.5 Store value in variable 2
+= x += 3.1 Same as (x = x + 3.1); add value to variable and

store back into variable
2

-= x -= 1.5 Same as (x = x - 1.5); subtract value from vari-
able and store back into variable

2

*= x *= 5 Same as (x = x * 5); multiply and store back 2
/= x /= 2 Same as (x = x / 2); divide by and store back 2

Figure 4.5. Assignment and arithmetic combinations.

3. The - is next; its left operand is the result of / and its right operand is the result of the parentheses
grouping.

4. The = is last; it stores the answer into x and returns the value as the result of the expression (this is
explained in the next section).

4.2 Arithmetic, Assignment, and Combination Operators

The arithmetic operators supported by C are listed in Figure 4.1. All these operators can be used on any
pair of numeric operands. The assignment operator was described and its uses discussed in Chapter 3.
These operators can be combined to give a shorthand notation for doing both actions. For example, the
expression (k += 3.5) has the same meaning as (k = k + 3.5). It means “fetch the current value of k,
add 3.5, and store the result back into k.” The symbol for a combination operator is formed by writing
the desired operator symbol followed by an assignment sign, as in += or *=. The arithmetic combinations are
listed in Figure 4.5, and a parse tree for assignment combinations in Figure 4.6. All combination operators
have the same very low precedence, which means that other operators in the expression will be parsed first.
If more than one assignment or combination operator is in an expression, these operators will be parsed and
executed right to left.

Side effects. The assignment combinations, along with ordinary assignment and the increment and decre-
ment operators (described in the next section), are different from all other operators: They have the side
effect of changing the value of a memory variable. Assignment discards the old value and replaces it with
a new value. The combination operators perform a calculation using the value of a memory variable then
store the answer back into the variable. When using a combination operator, the right operand may be a
variable or an expression, but the left operand must be a variable, since the answer will be stored in it.

Using combination operators. Figure 4.7 shows how two of the arithmetic combinations can be used
in a loop. It is a preliminary version of an algorithm for expressing a number in any selected number base;
the complete version is shown in Figure 4.23.

Notes on Figure 4.7. Arithmetic combinations.

Outer box.
This loop is slightly different from the counting loops and validation loops seen so far. It simply continues
a process that decreases n until the terminal condition, n equals 0, occurs. More loop types are discussed in
Chapter 6.
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This is the parse tree and evaluation for the expression k += m. Note that the combined operator is dia-
grammed with two brackets. The upper bracket is for +, which adds the initial value of k to the value of m.
The lower bracket shows that the sum is stored back into k.

   k

17.
510.
0 +=

7.5
 m

17.5

10.0 7.
5

Figure 4.6. Parse tree for an assignment combination.

Each time we halve a number, we eliminate one binary digit. If we halve it repeatedly until it reaches 0 and
count the iterations, we know how many binary digits are in the number.

#include <stdio.h>

int main( void )

{

int n; // Input - the number to analyze.

puts( "\n Halving and Counting\n " );

printf( " Enter an integer: " );

scanf( "%i", &n );

printf( " Your number is %i,", n);

int k = 0; // Initialize the counter before the loop.

while (n > 0) { // Eliminate one binary digit each time around loop.

n /= 2; // Divide n in half and discard the remainder.

k += 1; // Count the number of times you did this.

}

printf( " it has %i bits when written in binary. \n\n", k );

return 0;

}

Output:

Halving and Counting

Enter an integer: 37

Your number is 37, it has 6 bits when written in binary.

Figure 4.7. Arithmetic combinations.
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The increment and decrement operators cause side effects; that is, they change values in memory. The single
operand of these operators must be a variable or storage location. The prefix operators both associate right
to left; the postfix operators associate left to right.

Fixity Symbol Example Meaning Precedence

Postfix ++ j++ Use the operand’s value in the expression,
then add 1 to the variable

16

-- j-- Use the operand’s value in the expression,
then subtract 1 from the variable

16

Prefix ++ ++j Add 1 to the variable then use the new value
in the expression

15

-- --j Subtract 1 from the variable then use the
new value in the expression

15

Figure 4.8. Increment and decrement operators.

First inner box: halving the number.
The statement n /= 2; divides n by 2, throwing away the remainder. The quotient is an integer (with no
fractional part) and is stored back into n. Therefore, the value of 1/2 is 0, and the value of 7/2 is 3. Integer
arithmetic is discussed more fully in Chapter 7.

Second inner box: incrementing the counter.
The operator += is often used to increment loop counters, especially when counting by twos (or any increment
not equal to 1). As seen in the next section, the operator ++ is more popular for adding 1 to a counter.

4.3 Increment and Decrement Operators

C contains four operators that are not present in most other languages because of the problems they cause,
but they are very popular with C programmers because they are so convenient. These are the pre- and
postincrement (++) and pre- and postdecrement (--) operators, which let us add or subtract 1 from a
variable with only a few keystrokes. The increment operator most often is used in loops, to add 1 to the loop
counter. Decrement sometimes is used to count backward. Both normally are used with integer operands,
but they also work with variables of type double.

The same symbols, ++ and --, are used for both pre- and postincrement, but the former is written before
the operand and the latter after the operand. The actions they stand for are the same, too, except that
these actions are executed in a different order. Collectively, we call this group the increment operators; they
are listed in Figure 4.8.

4.3.1 Parsing Increment and Decrement Operators

The increment operators have two properties that, when put together, make them unique from the operators
considered earlier. First, they are unary operators, and second, they modify memory. The parse diagrams
for these operators reflect these differences.

To diagram an increment or decrement operator, bracket it with its single operand (which must be a
variable or a reference to a variable), drawing a stem under the operator and an assignment arrowhead to
show that the variable will receive a new value. That value also is passed on, down the parse tree, and can
be used later in the expression. See Figure 4.9 for examples.

When postincrement or postdecrement is used, it is also possible to have prefix unary operators applied
to the same operand. In this case, the postfix operator is parsed first (it has higher precedence), then the
prefix operators are done right to left. Thus, the expression (- x ++) parses to (- (x ++))4.

4The Applied C website, Program 4.A, shows a typical use of preincrement in a counting loop.
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The parse trees are shown for each of these operators. The arrowheads indicate that a value is stored back
into memory.

++

  3
  2
  j

3
? 
m =

 
3

 
3

1
2
j  --

 2
 ? 
 m =

2
 
2

--

 1
 2
 j

  1
 ? 
 m =

1
1

3
2
 
j
 ++

 2
 ? 
 m =

2
 
2

Figure 4.9. Increment and decrement trees.

4.3.2 Prefix versus Postfix Operators

For simplicity, we will explain the differences between pre- and postfix operators in terms of the increment
operators, but everything is equally true of decrement operators; simply change “add 1” to “subtract 1” in
the explanations.

Both prefix and postfix increment operators add 1 to a variable and return the value of the variable
for further use in an expression. For example, k++ and ++k both increase the value of k by 1. If a prefix
increment or a postfix increment operator is the only operator in an expression, the results will be the same.
However, if an increment operation is embedded in a larger expression, the result of the larger expression
will be different for prefix increment and postfix increment operators. Both kinds of increment operator
return the value of k, to be used in the larger expression. However, the prefix form increments the variable
before it returns the value, so that the value in memory and the one used in the expression are the same. In
contrast, postfix increment returns the original, unincremented value of the variable to the larger expression
and increments the value in memory afterward. Thus, the value used in the surrounding expression is 1
smaller than the value left in memory and 1 smaller than the value used in the prefix increment expression.

A further complication with postfix increment is that the change in memory does not have to happen
right away. The compiler is permitted to postpone the store operation for a while, and many do postpone
it in order to generate more efficient code.5 This makes postfix increment and decrement somewhat tricky
to use properly. However, you can depend on two things: First, if you execute x++ three times, the value of
x will be 3 greater than when you started. Second, by the time evaluation reaches the semicolon at the end
of the statement, all incrementing and decrementing actions will be complete.

4.3.3 Mixing increment or decrement with other operators.

An increment operator is an easy, efficient way to add 1 to the value of a memory variable. Most frequently,
increment and decrement operators are used in isolation. However, both also can be used in the middle of
an expression because both return the value of the variable for use in further computation.

5The exact rules for this postponement are complex. To explain them, one must first define sequence points and how they
are used during evaluation. This explanation is beyond the scope of the book.
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10

sum ++ += x

5
46

10

 10

 4 6

 +
 =

Figure 4.10. Evaluating an increment expression.

New programmers often write one line of code per idea. For example, consider the summation loop
below. The first line of the loop body increments x and the second line uses the new value:

x = 1; // Sum x for x = 1 to N

while (x <= N) { // Leave loop when x exceeds N.

sum += x; // Same as sum = sum + x

++x; // Add 1 to x to prepare for next iteration.

} // Go back to the while test.

An advanced programmer is more likely to write the following version, which increments x and uses it in
the same line. The parse tree and evaluation of the assignment expression are shown in Figure 4.10, for the
fourth time through the summing loop.

x = 1; // Sum x for x = 1 to N

while (x < =N) sum += x++;

As you can see, mixing an increment with other operators in an expression makes the code “denser”—
more actions happen per line—and it often permits us to shorten the code. By using two side-effect operators,
we have reduced the entire loop to one line. However, this happens at the expense of some clarity and, for
beginners, at the risk of writing something unintended.

When using an increment or decrement in an expression, the difference between the prefix and postfix
forms is crucial. If you use the postfix increment operator, the value used in the rest of the expression
will be one smaller than if you use the prefix increment. For example, the loop shown previously sums the
fractions 1/1 . . . 1/N . If a postfix increment were used instead of the prefix increment, it would try to sum
the fractions 1/0 . . . 1/(N − 1) instead. Of course, dividing by 0 is a serious error that causes immediate
program termination on some systems and meaningless results on others. Therefore, think carefully about
whether to use a prefix or postfix operator to avoid using the wrong value in the expression or leaving the
wrong value in memory. When these operators are used in isolation, such problems do not occur.

Guidance. Because of the complications with side effects, increment and decrement operators can be
tricky to use when embedded in a complex expression. They are used most often in isolation to change the
value of a counter in a loop, as in Figure 4.23. The following are some guidelines for their use that will help
beginners avoid problems:

1. Do not mix increment or decrement operators with other operators in an expression until you are an
experienced programmer.

2. Do not ever use increment on the same variable twice in an expression. The results are unpredictable
and may vary from compiler to compiler or even from program to program translated by the same
compiler.
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This short program demonstrates the proper syntax for using sizeof. Note that the parentheses are not
needed for variables but they are needed for type names.

// ---------------------------------------------------------------------

// Demonstrate the use of sizeof to determine memory usage of data types

#include <stdio.h>

#define e 2.718281828459045235360287471353 // Mathematical constant e.

int main( void ) // how to use sizeof

{

int s_double, s_int, s_char, s_unknown, k;

s_double = sizeof (double) ; // use parentheses with a type name

s_int = sizeof k ; // no parentheses needed with a variable

s_char = sizeof ’%’;

printf( " sizeof double = %i \n sizeof int = %i \n sizeof char = %i \n",

s_double, s_int, s_char );

s_unknown = sizeof e ;

printf( " sizeof e = %i \n", s_unknown );

return 0;

}

Results when run on our workstation:

sizeof double = 8
sizeof int = 4
sizeof char = 1
sizeof e = 8

Figure 4.11. The size of things.

3. Until you are experienced and are sure of the semantics of postfix operators, use prefix increment and
decrement operators instead. The are less confusing than postfix increment and decrement operators
and cause less trouble for beginners.

4.4 The sizeof operator.

When we declare an object, we say what type it will be. Types (sometimes called data types) are like
adjectives in English: The type of an object describes its size (number of bytes in memory) and how it may
be used. It tells the compiler how much storage to allocate for it and whether to use integer operations,
floating-point operations, or some other kind of operations on it.

Many types are built into the C language standard; each has its own computational properties and
memory requirements. Each type has different advantages and drawbacks, which will be examined in the
next few chapters. Later, we will see how to define new types to describe objects that are more complex
than simple letters and numbers.

The current popularity of C is based largely on its power and portability. However, the same data type
can be different sizes on different machines, which adversely affects portability. For example, the type int

commonly is two bytes on small personal computers and four bytes on larger machines. Also, some computer
memories are built out of words not bytes.

The actual size of a variable, in bytes, becomes very important when you take a program debugged on
one kind of system and try to use it on another; the variability in the size of a type can cause the program
to fail. To address this problem, C provides the sizeof operator, which can be applied to any variable or
any type to find out how big that type is in the local implementation. This is an important tool professional
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All operators listed here associate left to right.

Arity Usage Meaning Precedence

Binary x < y Is x less than y? 10
x <= y Is x less than or equal to y? 10
x > y Is x greater than y? 10
x >= y Is x greater than or equal to y? 10
x != y Is x unequal to y? 9
x == y Is x equal to y? 9

Figure 4.12. Relational operators.

programmers use to make their programs portable. Figure 4.11 shows how to use sizeof. The output from
this program will be different on different machines. It depends partly on the hardware and partly on the
compiler itself. You should know what the answers are for any system you use. One of the exercises asks
you to use sizeof to learn about your own compiler’s types. The results from the program in Figure 4.11
are shown following the code. From this we can deduce that the workstation is using four bytes for an int

and eight bytes for a double, which is usual. The literal constant e is represented as a double.

4.5 Relational Operators

The relational operators (==, !=, <, >, <=, and >=), with their meanings and precedence values, are
listed in Figure 4.12. These operators perform comparisons on their operands and return an answer of true
or false. To control program flow, we compare the values of certain variables to each other or to target
values. We then use the result to select one of the clauses of an if statement or control a loop.

4.5.1 True and False

C supports two sets of operators that give true/false results: comparison operators (==, !=, <, <=, >, >+)
and logical operators (&&, ||, !). The results of these operators are signed integers: true is represented
by 1 and false is represented by 0.

Every integer has a truth value . Values 0 and 1 are the canonical representations of false and true,
but C will interpret any value as true or false if it is used in a context that requires a truth value. The zero
values 0 and 0.0 and the zero character, ’\0’ are all represented by the same bit pattern as 0 and so all
are interpreted as false. Any nonzero bit pattern is interpreted as true. For example, all of the following
are true: -1, 2.5, ’F" and 367. Suppose we use one of these values as the entire condition of an if

statement:

if ( -1 ) puts( "true" ) else puts( false" );

In human language, this makes no sense. However, to C, it means to find the truth value of -1, which is
true. So, the answer “true” will be printed. Similarly, if we write

if ( ’F’ ) puts( "true" ) else puts( false" );

The answer “true” will be printed, because ’F’ is not a synonym for zero.
Many languages (including Java and C++) have a Boolean type built into the language. It is used to

represent the answers to yes-no questions such as, “Is the data value legal?” and “Are two objects the same?”
For consistency with C++, the C99 standard introduced a standard type bool and defined the boolean values
true and false. To use this type, some compilers require the program to #include <stdbool.h>.

A program in which the numeral 1 is used to represent both the number one and the truth value true

can be difficult to read and interpret. For this reason, it is much better style to write true when you mean
a truth value and reserve 1 for use as a number. We will use the symbols false and true for truth values
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instead of the numbers 0 and 1. We also adopt modern usage and declare truth-valued variables to have
type bool.

4.5.2 The semantics of comparison.

A relational operator can be used to compare two values of any simple type6 or two values that can be
converted to the same simple type. The result is always an int, no matter what types the operands are, and
it is always either a 1 (true) or a 0 (false).

A common error among inexperienced C programmers is to use the assignment operator = instead of the
comparison operator ==. The expression x == y is not the same as x = y. The second means “make x equal
to the current value of y”, while x == y means “compare the values of x and y”. Therefore, if a comparison
is done after the inadvertent assignment operation, of course, the values of the two variables will be equal.
It may help you to pronounce these operators differently; we use “compares equal” for == and “gets” for =.

In other languages, such an error would be trapped by the compiler. In C, however, assignment is an
“ordinary” operator that has precedence and associativity like other operators and actually returns a value
(the same as the value it stores into memory). A C compiler has no way of knowing for sure whether a
programmer meant to write a comparison or an assignment. Some compilers give a warning error comment
when the = operator is used within the conditional part of an if or while statement; however, doing so
is not necessarily an error, so the comment is only a warning, not fatal, and the compiler should produce
executable code.

4.6 Logical Operators

Sometimes we want to test a more complicated condition than a simple equality or inequality. For example,
we might need an input value between 0 and 10 or require two positive inputs that are not equal to each
other. We can create compound conditions like these by using the logical operators && (AND), || (OR),
and !(NOT). The former condition can be written as x >= 0 && x <= 10 and the latter as x > 0 && y >

0 && x != y. Logical operators let us test and combine the results of comparison expressions.

4.6.1 Truth-valued operators.

All the comparison and logical operators produce truth values as their results. For example, if you ask x ==

y, the answer is either 0 (false) or 1 (true). The meanings of &&, ||, and ! are summarized by the truth
table in Figure 4.13. The first two columns of the truth table show all possible combinations of the truth
values of two operands. T is used in these columns to mean true, because an operand can have any value,
not just 1 or 0. The last three columns show the results of the three logical operations. In these columns,
true answers are represented by 1 because C always uses the standard true to answer questions.

Let us look at a few examples to learn how to use a truth table. Assume x = 3 and y = -1. Then both
x and y are true, so we would use the last line of the table. To find the answer for x && y, use the fourth
column. To find x || y, use the fifth column. As a second example, suppose x=0 and y=-1; then x is false
and y is true, so we use the second row. Therefore, x || y is true (1) and x && y is false (0).

4.6.2 Parse Trees for Logical Operators

The precedence and usage of the three logical operators are summarized in Figure 4.14. Note that && has
higher precedence than || and that both are quite low in the precedence table. If an expression combines
arithmetic, comparisons, and logic, the arithmetic will be parsed first, the comparisons second, and the logic
last. The practical effect of this precedence order is that we can omit many of the possible parentheses
in expressions. Figure 4.15 gives an example of how to parse an expression with operators of all three
kinds. Before beginning the parse, we note the precedence of each operator used. Beginning with the

6Types double and int are simple. Nonsimple types are compounds with more than one part such as strings, arrays, and
structures. These will be discussed in later chapters.
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C uses the value 1 to represent true and 0 to represent false. The result of every comparison and logical
operator is either 0 or 1. However, any value can be an input to a logical operator; all nonzero operands are
interpreted as true. In the table, T represents any nonzero value.

Operands Results

x y !x x && y x || y

0 0 1 0 0
0 T 1 0 1
T 0 0 0 1
T T 0 1 1

Figure 4.13. Truth table for the logical operators.

highest-precedence operator and proceeding downward, we then parenthesize or bracket each operator with
its operands.

A small circle, called a sequence point, is written on the parse tree under every && and || operator. The
order of evaluation of the parts of a logical expression is different from other expressions, and the sequence
points remind us of this difference. For these operators, the part of the tree to the left of the sequence point
is always evaluated before the part on the right.7 This fact is very important in practice because it permits
us to use the left side of a logical expression to “guard” the right side, as explained in the next section.

4.6.3 Lazy Evaluation

Logical operators have a special property that makes them different from all other operators: You often can
know the result of an operation without even looking at the second operand. Look again at the truth table in
Figure 4.13, and note that the answer for x && y is always 0 when x is false. Similarly, the answer for x ||

y is always 1 when x is true. This leads to a special method of computation, called lazy evaluation, that
can be used only for logical operators. Basically, the left operand of the logical operator is evaluated then
tested. If that alone decides the value of the entire expression, the rest is skipped. We show this skipping
on the parse tree by writing a diagonal pruning mark on the branch of the tree that is skipped. You can
see these marks on the trees in Figures 4.17 and 4.19. To further emphasize the skipping, a loop is drawn
around the skipped portion. Note that no operator within the loop is executed.

Logical-AND. Figure 4.16 summarizes how lazy evaluation works for logical-AND, and Figure 4.17 illus-
trates the most important use of lazy evaluation: guarding an expression. The left side of a logical-AND
expression can be used to “guard” the right side. We use the left side to check for “safe” data conditions; if
found, the left side is true and we execute the right side. If the left side is false, we have identified a data
value that would cause trouble and use lazy evaluation to avoid executing the right side. In this way, we
avoid computations that would cause a machine error or program malfunction. For example, in Figure 4.17,

7 Two other operators, the question mark and the comma, have sequence points associated with them. For all other operators
in C, either the right side of the tree or its left side may be evaluated first.

Arity Usage Meaning Precedence Associativity

Unary !x logical-NOT x (logical opposite) 15 right to left

Binary x && y x logical-AND y 5 left to right
x || y x logical-OR y 4 "

Figure 4.14. Precedence of the logical operators.
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We parse the expression y = a < 10 || a >= 2 * b && b != 1 using parentheses and a tree.

 y =    a<10 ||   a >= (2*b)   &&  b != 1

 y =  (a<10) ||  (a >= (2*b)) && (b != 1)

 y =  (a<10) || ((a >= (2*b)) && (b != 1))

 y = ((a<10) || ((a >= (2*b)) && (b != 1))) 

(y = ((a<10) || ((a >= (2*b)) && (b != 1))))

 y =  (a<10) ||  (a >= (2*b)) &&  b != 1

Level 5:
Level 4:
Level 2:

Level 13:

Level 10:

Level 9:

Parenthesizing in precedence order:

 a <  10 ||  y  =  2  * b  && a  b>=  1 !=
4 10 1310 5 92

Precedence level is listed above each operator.

Figure 4.15. Parsing logical operators.

we want to test a condition with x in the denominator. But dividing by 0 is an error, so we should check the
value of x before testing this condition. If it is 0, we skip the rest of the test; if it is nonzero, we go ahead.

Logical-OR. Figure 4.18 summarizes how lazy evaluation works for logical-OR, and Figure 4.19 illustrates
how lazy evaluation can be used to improve program efficiency. Logical-OR often is used for data validation.
If one validity condition is fast to compute and another is slow, we can save a little computation time by
putting the fast test on the left side of the logical-OR and the slow test on the right. Or we could put the
most common problem on the left and an unusual problem on the right.

Figure 4.19 shows two evaluations of a logical-OR expression that is used in the next program. If the
input data fails the first test, the second test determines the result of the expression. If the data passes the
first test, we save time by skipping the second test and return the result of the left side.

4.7 Integer Operations

Modern computers have two separate sets of machine instructions that perform arithmetic: one for integers,
the other for floating-point numbers. We say that the operators, *, /, +, and -, are generic, because they
have more than one possible translation. When a C compiler translates a generic operator, it uses the
types of the operands to select either an integer or a floating-point operation. The compiler will choose

x y x && y

0 ? 0 and skip second operand
T 0 0
T T 1

• To evaluate an && operator, first evaluate its left operand. This operand might be a simple variable or
literal, or it might be a complicated expression.

• Look at the truth value. If it is false, return 0 as the answer to the && operation and skip the next step.

• Otherwise, we do not yet know the outcome of the expression, so evaluate the right operand. If it is
false, return 0. Otherwise, return 1.

Figure 4.16. Lazy truth table for logical–AND.
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We evaluate a logical expression twice with different operand values.

(1) Evaluation with x = 3.1 and b = 4. All
parts of the expression are evaluated because
the left operand is true.

!=
3.1

&& 1.0<

 T  1
 F  0

 /

 F 0

b xx
3.14

1.29

0

The / and < operators are evaluated and their
results are written under the operators on the
tree.

(2) Evaluation with the values x = 0.0 and
b = anything. Skipping happened because the
left operand is false.

 F 0

0.0
&&

 F  0

!= 1.0< /b xx 0

The “pruning mark” on the tree and the looped
line show the part of the expression that was
skipped.

Figure 4.17. Lazy evaluation of logical–AND.

integer operations when both operands are integers; the result will also be an integer. In all other cases, a
floating-point operation will be chosen.

4.7.1 Integer Division and Modulus

Division. Like the other arithmetic operators, the division operator / is generic; its meaning depends on
the types of its operands. However, each of the operators *, +, and - symbolizes a single mathematical
operation, even though it is performed in two different ways on the two kinds of number representations.
In contrast, / represents two different mathematical operations: real division (where the answer has a
fractional part) and integer division (where there are two parts of the answer, the quotient and the
remainder). Here, the instruction used makes a significant difference. With floating-point operands, only
real division is meaningful. However, with integer operands, both real and integer division are useful and

x y x || y

T ? 1 and skip second operand
0 0 0
0 T 1

• To evaluate an || operator, first evaluate its left operand. This operand might be a simple variable or
literal or it might be a more complicated expression.

• Look at the truth value. If it is true, return 1 as the answer to the || operation and skip the next step.

• Otherwise, we do not yet know the outcome of the expression so evaluate the right operand. If it is
false, return 0. Otherwise, return 1.

Figure 4.18. Lazy truth table for logical–OR.
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We evaluate a logical expression twice with different operand values. The first time, the entire expression
is evaluated. The second time, a shortcut is taken.

(1) Evaluation with vmax = 6. All parts of
the expression are evaluated because the left
operand is false.

 F 0

<
6

||  >

 F 0

vmax UPPERvmax
1065

 F 0

LOWER

The < and > operators are both evaluated and
their results are written under the operators on
the tree.

(2) Evaluation with vmax = 3. The left side is
true, which causes skipping.

 T 1

<
3

||  >

 T 1

vmax UPPERvmax
5

LOWER

The pruning mark on the tree and the looped
line show the part of the expression that was
skipped.

Figure 4.19. Lazy evaluation of logical-OR.

a programmer might wish to use either one. In C, if both operands are integers, the integer quotient is
calculated and the remainder is forgotten. A programmer who needs the remainder of the answer can use
the modulus operator, %, which is described shortly. If the entire fractional answer is needed, one of the
operands must first be converted to floating-point representation. (Data type conversion techniques are
covered later in this chapter.)

Division by 0. Attempting to divide by 0 will cause an error that the computer hardware can detect.
In most cases, this error will cause the program to terminate.8 It always is wise to check for this condition
before doing the division operation in order to make the program as robust as possible; that is, it does
something sensible even when given incorrect data.

Indeterminate answers (optional topic). A further complication of integer division is that the C
standard allows two different correct answers for x/y in some cases. When x is not an even multiple of y and
either is negative, the answer can be the integer either just larger than or just smaller than the true quotient
(this choice is made by the compiler, not the programmer). This indeterminacy is provided by the standard
to accommodate different kinds of hardware division instructions. The implication is that programs using
division with signed integers may be nonportable because the answer produced depends on the hardware.
This “feature” of the language is worse in theory than in practice; we tested C compilers running on a variety
of hardware platforms and found that they all truncate the answer toward 0 (rather than negative infinity).
However, the careful C programmer should be aware of the potential problem here.

Modulus. When integer division is performed, the answer has two parts: a quotient and a remainder.
C has no provision for returning a two-part answer from one operation, so it provides two operators. The
integer modulus operator, named mod and written %, performs the division and returns the remainder,

8More advanced techniques, beyond the scope of this book, can be used to take special action after the termination.
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x y x % y

10 3 1
9 3 0
8 3 2
7 3 1
6 3 0
5 3 2

x y x % y

3 10 3
3 9 3
7 2873 7
7 7 0
7 1 0
7 0 Undefined

Figure 4.20. The modulus operation is cyclic.

while / returns the quotient. Figure 4.20 shows the results of using % for several positive values; Figure 4.21
is a visual presentation of how mod is computed. Note the following properties of this operator:

• Mod is defined for integers x and y in terms of integer division as: x % y = x− y × (x/y).

• If x is a multiple of y, the answer is 0.

• If x is smaller than y, the answer is x.

• The operation x % y is a cyclic function whose answer (for positive operands) always is between 0 and
y − 1.

• This operator has no meaning for floating-point operands.

• If y is 0, x % y is undefined. At run time a division by 0 error will occur.

• The results of / with negative values is not fully defined by the standard; implementations may vary.
For example, −5/3 can equal either −1 (the usual answer) or −2. Since the definition of % depends on
the definition of /, the result of x % y is indeterminate if either x or y is negative. Therefore, -5 % 3

can equal either −2 or 1.

A program that uses integer / and % is given in the next section, and one that uses the % operator to
help format the output into columns is in Figure 5.26.

4.7.2 Applying Integer Division and Modulus

We normally count and express numbers in base 10, probably because we have 10 fingers. However, any
number greater than 1 can be used as the base for a positional notation.9 Computers use base 2 (binary)
internally and the C language lets us write numbers in bases 8 (octal) and 16 (hexadecimal) as well as base
10 (decimal). These number representations and the simple algorithms for converting numbers from one base
to another are described in Appendix E. The next program shows how one can use a computer to convert
a number from its internal representation (binary) to any desired base. The algorithm used is based on the
meaning of a positional notation:

• Each digit in a number represents a multiple of its place value.

• The place value of the rightmost position is 1.

• The place value of each other position is the base times the place value of the digit to its right.

Therefore, given a number N (in the computer’s internal representation) and a base B, N % B is the
digit whose place value is B0 = 1 when expressed in positional notation using base B. We can use these
facts to convert a number N to the equivalent value N ′ in base B.

The algorithm is a simple loop that generates the digits of N ′ from right to left. On the first pass through
the conversion loop, we compute N % B, which is the rightmost digit of N ′. Having done so, we are no longer

9Theoretically, negative bases can be used, too, but they are beyond the scope of this text.
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To calculate a % b, we distribute a markers in b columns. The answer is the number of markers in the last,
partially filled row. (If the last row is filled, the answer is 0.)

operation: 12 % 5 15 % 5 4 % 5 5 % 4 10 % 4

--------------------------------------------------------

x x x x x x x x x x x x x x . x x x x x x x x

x x x x x x x x x x x . . . x x x x

x x . . . x x x x x x x . .

--------------------------------------------------------

answer: 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 0 1 2 3 0

↑ ↑ ↑ ↑ ↑

Figure 4.21. Visualizing the modulus operator.

interested in the 1’s place, so we compute N = N/B to eliminate it and prepare for the next iteration.
We continue this pattern of using % to generate digits and integer division to reduce the size of N until
nothing is left to convert. An example is given in Figure 4.22, a program that implements this algorithm is
in Figure 4.22 and the flow diagram for this program in Figure 4.24. This program also illustrates the use
of an increment operator, logical opertor, and assignment combination operator.

Notes on Figure 4.23. Number conversion.

First box: selecting a valid base and the number to convert.
• We have restricted the acceptable number bases to the range 2. . . 10, which restricts the possible digits

in the answer to the range 0. . . 9. This algorithm could be used to convert a number to any base. We
demonstrate it here only for bases of less than 10 because we wish to focus attention on the conversion
algorithm, not on the representation of digits greater than 9.

• We use 2 as the minimum base value; 1 and 0 cannot be used as bases for a positional notation. The
following output shows an example of error handling:

Read an integer and express in a given base.
Please enter a number to convert and
a target base between 2 and 10: 3 45
Base must be between 2 and 10.

• Any integer, positive, negative or zero, can be accepted as input for the number to be converted. However,
0 must be treated as a special case. The following output shows an example

Any number N can be expressed in positional notation as a series of digits:

N = . . . D3D2D1D0

If the number’s base is B, then each digit is between 0 and B − 1 and the value of the number is

N = . . . B3 ×D3 +B2 ×D2 +B1 ×D1 +D0

Now, if N = 1234 and B = 10, we can generate all the digits of N by repeatedly taking N % B and reducing
N by a factor of B each time:

D0 = 1234 % 10 = 4 N1 = 1234/10 = 123
D1 = 123 % 10 = 3 N2 = 123/10 = 12
D2 = 12 % 10 = 2 N3 = 12/10 = 1
D3 = 1 % 10 = 1 N4 = 1/10 = 0

Figure 4.22. Positional notation and base conversion.
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Read an integer and express in a given base.
Please enter a number to convert and
a target base between 2 and 10: 0 3
0 is 0 in every base.

Second box (outer): converting to the selected base.
• We start by generating the coefficient of B0, so we set power = 0. After each iteration, we increment
power to prepare for converting the coefficients of B1, B2, and so forth.

• We reduce the size of N on each iteration by dividing it by the target base; we continue until N is reduced
to 0.

• Note that a loop test need not always involve the loop counter; it is necessary only that the value being
tested change somewhere within the loop.

• We first print the number itself (in base 10) and then an = sign before the first term of the answer. We
indent and print a + before all other terms.

Two examples of the output.
Read an integer and express in a given base.
Please enter a number to convert and
a target base between 2 and 10: 45 3

Convert an integer to a selected base and print it using place-value notation.

#include <stdio.h>

int main( void )

{

int n; // input: the number to convert

int base; // input: base to which we will convert n

int rhdigit; // right-hand digit of n-prime

int power; // loop counter

printf( " Read an integer and express it in a given base.\n"

" Please enter a number to convert and\n"

" a target base between 2 and 10: " );

scanf( "%i %i", &n, &base );

if (base < 2 || base > 10) printf( " Base must be between 2 and 10\n" );

else if (n==0) printf ( " 0 is 0 in every base.\n" );

power = 0;

// --- Generate and print digits of converted number, right to left.

while (n != 0) {

if (power == 0) printf( "%12li = ", n );

else printf( " + ");

rhdigit = n % base; // Isolate right-hand digit of n.

n /= base; // then eliminate right-hand digit.

printf( "%hi * %hi^%i \n", rhdigit, base, power );

++power;

}

return 0;

}

Figure 4.23. Number conversion.



94 CHAPTER 4. EXPRESSIONS

int n, 
int  base,
int rhdigit, 
int power

main
print titles

prompt for and read 
n (number to convert)

and target number base 

print error 
commentvalidate base

base < 2 or 
base > 10

base between 2 and 10

if n==0 Print:
 answer is 0.

True

Calculate next digit of answer: 
rhdigit = n % base

Strip rhdigit off the end:
n /= base

if

return

True

False
while

Print a digit and its place value.

False

n != 0

set power = 0

echo 
input

power == 0print 
spaces

True

False

Figure 4.24. A flow diagram for the base conversion.

45 = 0 * 3^0
+ 0 * 3^1
+ 2 * 3^2
+ 1 * 3^3

Read an integer and express in a given base.
Please enter a number to convert and
a target base between 2 and 10: -45 10

-45 = -5 * 10^0
+ -4 * 10^1

Inner box: decomposing the number, digit by digit. As explained, we use % to generate each digit
of N ′. Then we use integer division to reduce N by removing the extracted digit and shifting the others
one position to the right. This prepares N for the next iteration. Real division would not work here; the
algorithm relies on the fact that the remainder is discarded.
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Problem scope: Determine how many barrels of ice cream to buy to fill one cone for each guest at the
annual picnic. The cone portion should be filled, and a half-sphere of ice cream should be on top.

Inputs: Diameter and height of cones. Diameter and height of a 3-gallon barrel of ice cream. (All in cm.)

Full coneIce cream barrel

hb

db

Empty cone

hc

dc

Constants: Number of guests (number of cones needed).
Formulas:

volume of ice cream needed = number of guests ∗ volume of one full cone

barrels needed = volume of ice cream needed/volume of barrel

volume of full cone = volume of hemisphere + volume of empty cone

volume of barrel = π ∗ hb ∗ db2/4

volume of cone = π ∗ (dc/2)2 ∗ hc/3

volume of hemisphere = 2 ∗ π ∗ (dc/2)3/3

Output required: Number of 3-gallon barrels of ice cream to buy.

Debugging outputs: Volume of one barrel, volume of an empty cone, volume of the half-sphere of ice
cream on top of the cone, and total volume of the full cone.

Figure 4.25. Problem specification: Ice cream for the picnic.

4.8 Techniques for Debugging

4.8.1 Using Assignments and Printouts to Debug

One cause for logic errors is complexity, and that complexity also makes the errors difficult to find and
difficult to correct. Sometimes an algorithm is complex; that can be addressed by breaking it into modular
parts, as shown in Chapter 5. Here, we address the problem of debugging complex formulas.

Suppose we wish to write a program for the specification in Figure 4.25. We could combine all the
formulas given into one line:

barrels needed = Number of guests ∗ π ∗ (dc3/12 + (dc/2)2 ∗ hc/3)/(hb ∗ db2/4)

However, the resulting formula is quite complex and difficult to compute by hand or in one’s head. It would
make much more sense to calculate each formula, as given. Even better, you might notice that the expression
dc/2 is used twice, and compute it separately also. The program in Figure 4.26 uses a sequence of assignment
statements to calculate the parts of the long. messy formula.

Notes on Figure 4.26. How much ice cream?

First box.
In addition to the four variables that we need for input and the one for output, we define four variables for
intermediate results.
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Second box.
An important aid in debugging is to be certain that the inputs that were actually read by the program are
the ones that the user intended to enter. Echoing the inputs as part of the output is sound programming
practice.

Third box.
• We implement the separate formulas instead of the combined formula to make both programming and

debugging easier and less error prone. It is a little more work for the computer this way, but in almost
all circumstances, simplicity is better than complexity.

• We compute each formula and store its result for later use. We also print each result, so that the user
can hand-verify each part of the computation.

• These formulas are not computed in the same order as they are given in the specification because, in C,
each part must be computed before it is used. The specification starts with the general formula and goes
on to the details. We must compute the details before we can compute the general formula.

#include <stdio.h>

#define GUESTS 100

#define PI 3.1415927

int main( void )

{
double h_cone, d_cone; // Height and diameter of part

double h_barrel, d_barrel; // Height and diameter of barrel

double n_barrels; // Number of barrels needed.

double r_cone, v_cone; // Cone’s radius and volume

double v_barrel, v_hemi; // Volume of barrel and ice cream on top.

printf( " How much ice cream do we need?\n"

" Enter Diameter and height of ice cream barrel: " );

scanf( "%lg %lg", & d_barrel, & h_barrel);

printf( " Enter Diameter and height of an empty cone: " );

scanf( "%lg %lg", & d_cone, & h_cone);

printf( " Barrel is %g cm. wide, %g cm. tall.\n", d_barrel, h_barrel );

printf( " Cones are %g cm. wide, %g cm. tall.\n", d_cone, h_cone );

v_barrel = PI * h_barrel * d_barrel * d_barrel / 4;

printf( " Barrel volume = %g\n", v_barrel );

r_cone = d_cone / 2;

v_cone = PI * r_cone * r_cone * h_cone / 3;

printf( " Cone volume = %g\n", v_cone );

v_hemi = 2 * PI * r_cone * r_cone * r_cone / 3;

printf( " Top volume = %g\n", v_hemi );

printf( " Full cone volume = %g cm^3\n", v_hemi + v_cone );

n_barrels = GUESTS * (v_hemi + v_cone ) / v_barrel ;

printf( " You need %g barrels of ice cream.\n", n_barrels );

return 0;

}

Figure 4.26. How much ice cream?
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• We want to print the volume of the full cone, but do not need it in any further computation. Moreover,
the formula is simple (it involves only one operation). So we choose to write the formula as part of the
printf() statement, rather than as a separate assignment statement. This technique is good style as
long as the results are not very complex.

• Sample output:

How many gallons of ice cream do we need?

Enter Diameter and height of ice cream barrel: 30 40

Enter Diameter and height of an empty cone: 10 15

Barrel is 30 cm. wide, 40 cm. tall.

Cones are 10 cm. wide, 15 cm. tall.

Barrel volume = 28274.3 cm^3

Cone volume = 392.699 cm^3

Top volume = 261.799 cm^3

Full cone volume = 654.498 cm^3

You need 2.31481 barrels of ice cream.

• If you have an on-line debugger and know how to use it, you can set a breakpoint after each computation
instead of printing the result. Both ways will give you the information you need. However, if you need
to ask someone who is not present for assistance, it is essential to provide that person with printouts of
both the program and the results.

Fourth box.
• Finally we are able to implement one form of the general formula. It is too long and complex to fit easily

into a printf() statement, so we compute the answer and store it in a variable first, then print it.

• When we wrote this program, we were uncertain whether the answers were right or wrong, So we used
the intermediate printouts with a calculator to verify that each part was correct and made sense. Then
we verified that the final result was correctly computed from the intermediate results.

4.8.2 Case Study: Using a Parse Tree to Debug

When a program seems to work but gives the wrong answers, the problem sometimes lies in the expressions
that calculate those answers. Drawing a parse tree can help debug the program; that is, help a program-
mer find the error. We illustrate this technique through a case study for which Figure 4.27 gives the full
specification. In this problem, a circuit is wired with three resistances connected in parallel, as shown in the
specification. We must calculate the electrical resistance equivalent, req, for this part of the circuit.

Step 1. Making a test plan. Making a test plan first is a good way to understand the problem. It forces
us to analyze the formulas, look at the details, and think about what kind of data might cause problems.
We look at the problem specification to decide what the test plan should be.

The first test case should be something that can be computed in one’s head. We note that the arithmetic
is very simple if all the resistances are 2 ohms, so we enter this case in the test chart, which follows. We want
to test inputs with fractional values and note that we can easily compute the answer for three resistances
of 0.1 ohm each. Then we notice that, if two inputs are 0, the denominator of the fraction will be 0. Since
division by 0 is undefined, this will cause trouble. Since no limitations on input values are specified, it is
unclear what to do about this. Resistances that are 0 or negative make no realistic sense, so we decide to
warn the user and trust him or her to enter valid data. Next, we enter an arbitrary set of values, just to
see what the output will look like for the typical case. We use a pocket calculator and a pencil to do the
computation by hand. We now have three tests in our test plan, which is enough for a very simple program.

r1 r2 r3 req

2 2 2 8.0/12.0 = 0.666667
0.1 0.1 0.1 0.001/0.03 = 0.033333

75 40 2.5 2.28137
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Problem scope: Find the electrical resistance equivalent, req, for three resistances wired in parallel.
Input: Three resistance values, r1, r2, and r3.
Formula:

r
1

r2 r
3

r_eq = r_eq
r1 * r2 * r3 

r1*r2 + r1*r3 + r2*r3  

Constants: None.
Output required: The three inputs and their equivalent resistance.
Computational requirements: The equivalent resistance should be a real number, not an integer.

Figure 4.27. Problem specification: Computing resistance.

Step 2. Starting the program. Write the parts that remain the same from application to application.
We write the #include statement and the first and last lines of main() with the opening and closing messages.
The dots (. . .) represent the unfinished parts of the program.

#include <stdio.h>

... // Space for #defines.

int main( void )

{ ... // Space for declarations.

puts( "\n Computing Equivalent Resistance \n" );

... // Space for I/O and computations.

puts( "\n Normal termination." );

}

Step 3. Reading the input. We need to read three resistance values; we could do this with three calls
on scanf() or with one. We choose to use one call because one input step is faster for the user and we do
not think the user will be confused by giving three answers for one prompt in this situation. To store the
three values, we need three variables, which we name r1, r2, and r3. We declare these as type double (not
int) because the answer will have a fractional part. We write a declaration for three doubles:

double r1, r2, r3; // input variables for resistances

Now we are ready for the prompt and the input. In the format for scanf(), we write three percent signs
because we will be reading three values. Since we are reading double values, we write lg (the letter l, not the
numeral 1) after the percent signs. We remember to write the ampersand before the name of each variable
that needs to receive an input value.

printf( "\n Enter resistances #1, #2, and #3 (ohms).\n"

" All resistances must be greater than 0: " );

scanf( "%lg%lg%lg", &r1, &r2, &r3 );

Finally, we write a printf() statement to echo the three input values. In the output format, we again write
three percent signs, for three values. However, the correct output code for type double is g, without the l.
At the end of the format we remember to write a newline character. After the format we list the names of
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// ----------------------------------------------------------------

// Compute the equivalent resistance of three resistors in parallel

//

#include <stdio.h>

int main( void )

{

double r1, r2, r3; // input variables for three resistances

double r_eq; // equivalent resistance

puts( "\n Computing Equivalent Resistance\n" );

printf( "\n Enter values of resistances #1, #2, and #3 (ohms).\n"

" All resistances must be greater than 0: " );

scanf( "%lg%lg%lg", &r1, &r2, &r3 );

printf( " r1= %g r2= %g r3= %g\n", r1, r2, r3 );

r_eq = r1 * r2 * r3 / r1 * r2 + r1 * r3 + r2 * r3;

printf( " The equivalent resistance is %g\n\n", r_eq );

return 0;

}

Figure 4.28. Computing resistance.

the variables to print, without ampersands. (Reading into a variable requires an ampersand; writing does
not.)

printf( "\n r1= %g r2= %g r3= %g\n", r1, r2, r3 );

Step 4. Computation and output. Now we transcribe the mathematical formula into C notation,
changing the fraction bar to a division sign and writing the subscripts as part of the variable names. In
the process, we note that we need a variable for the result and declare another double. Then we write a
printf() statement to print the result. We have

double r_eq; // equivalent resistance

...

r_eq = r1 * r2 * r3 / r1 * r2 + r1 * r3 + r2 * r3;

printf( " The equivalent resistance is %g\n", r_eq );

Step 5. Putting it together and testing it. We now type in all the parts of the program. The code
compiled successfully after correcting a few typographical errors; the result is shown in Figure 4.28. We then
ran the program and entered the first data set. The output was

Computing Equivalent Resistance

Enter values of resistances #1, #2, and #3 (ohms).
All resistances must be greater than 0: 2 2 2

r1= 2 r2= 2 r3= 2
The equivalent resistance is 16

Comparing the answer to the answer in our test plan, we see that it is wrong. The correct answer is 0.667.
What could account for the error? There are three possibilities:

1. The input was read incorrectly. This could happen if the format were inappropriate for the data type
of the variable or if we forgot to write an ampersand in front of the variable name.
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r_eq =  r1 * r2 *   r1 * + +r1 r3* r2 r3*r2  r3 /

Figure 4.29. Finding an expression error.

2. The answer was printed incorrectly. This could happen if the format were inappropriate for the data
type of the variable or if we wrote the wrong variable name or put an ampersand in front of it.

3. The answer was computed incorrectly.

We eliminate the first possibility immediately; we echoed the data and know it was read correctly. This is
why every program should echo its inputs. Then we look carefully at the final printf() statement and see
no errors. We think this is not the problem. The remaining possibility is that the computation is wrong, so
we need to analyze the formula we wrote.

Step 6. Correcting the error. The best way to analyze a computation is with a parse tree, so we copy
the expression on a piece of paper and begin drawing the tree (see Figure 4.29).

1. The * and / are the highest precedence operators in the expression so they are parsed first using
left-to-right associativity, as shown in Figure 4.29.

2. At the / sign, we see that the right operand is r1, which does not correspond to the mathematical
formula. The error becomes clear; the denominator for / should be the entire subexpression r1 * r2

+ r1 * r3 + r2 * r3, not just r1.

3. The error is corrected by adding parentheses as shown in Figure 4.30, so that it now corresponds to
the mathematical formula.

We correct the program, recompile it, and retest it. The results are

Computing Equivalent Resistance
Enter values of resistances #1, #2, and #3 (ohms).
All resistances must be greater than 0: 2 2 2

r1= 2 r2= 2 r3= 2
The equivalent resistance is 0.667

Normal termination.

  r1   r3*   r2 r2( )  r1* + +   r3*r_eq =  r1 * r2 *   r3 /

Figure 4.30. Parsing the corrected expression.
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We see that the first answer is now correct. Before going on, we also consider the appearance of the output.
Is it neat and readable? Does every number have a label? Should the vertical or horizontal spacing be
adjusted? We decide to add a blank line before the final answer, so we insert a \n at the beginning of the
format. The boxed section of the program now is

r_eq = r1 * r2 * r3 / (r1 * r2 + r1 * r3 + r2 * r3);

printf( "\n The equivalent resistance is %g\n", r_eq );

We recompile the program and go on with the test plan. The program produces correct results for the other
two test cases:

Enter values of resistances #1, #2, and #3 (ohms).
All resistances must be greater than 0: .1 .1 .1

r1= 0.1 r2= 0.1 r3= 0.1

The equivalent resistance is 0.033
-------------------------------------------------

Enter values of resistances #1, #2, and #3 (ohms)
All resistances must be greater than 0: 75 40 2.5

r1= 75 r2= 40 r3= 2.5

The equivalent resistance is 2.281

The output is correct, neat, and readable, so we declare the program finished.

4.9 What You Should Remember

4.9.1 Major Concepts

This chapter is concerned with how to create and name objects, how to use types to describe their properties,
and how to combine the objects with operators to form expressions. These concepts are summarized here.

• Operators:

– Operators are like verbs: They represent actions and can be applied to objects of appropriate
types. An expression is like a sentence: It combines operators with the names of objects to specify
a computation.

– Precedence, associativity, and parentheses control the structure of an expression. The precedence
of C operators follows normal mathematical conventions.

– A few operators have side effects; that is, they modify the value of some variable in memory. These
include the assignment operator, assignment combinations, increment, and decrement.

– Integer division is not the same as division using real numbers; any remainder from an integer
division is forgotten. The remainder, if needed, must be computed by using the modulus operator
(%).

– The result of a comparison is always either true (1) or false (0).

– Every data value can also be interpreted as either true or false: zero is false, and every other
value is true. Sometimes it surprises beginners to learn that a negative number will be interpreted
as true when it is the operand of a logical operator, an if statement or a while statement.

• Diagrams. Diagrams are used to visualize the parts of a program and how they interact. They become
increasingly important as the more complex features of C are introduced. We have now introduced
three ways to visualize the aspects of a program:

1. A flow diagram (introduced in Chapter 3) is used to depict the structure of an entire program
and clarify the sequence of execution of its statements.

2. A parse tree is used to show the structure of an expression and can be used to manually evaluate
the expression.
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3. An object diagram is used to visualize a variable. Simple object diagrams were introduced in this
chapter; more elaborate diagrams will be introduced as new data types are presented.

• Debugging. To debug a program, you must find and correct all the syntactic, semantic, and logical
errors. The best practice is to design and write your code so that this becomes easy:

1. Strive for simplicity at all times in every way.

2. Do a thorough specification first.

3. Keep your formulas short.

4. Echo the inputs.

5. Print out intermediate results or use an online debugger.

6. Hand-check the results.

7. Use a parse tree if you cannot find an error in a formula.

4.9.2 Programming Style

• Names: You must name every object and function you create. The compiler does not care what names
you use as long as they are consistent. However, people do care. Obscure names, silly names, and
unpronounceable names hinder comprehension. A program with bad names takes longer to debug.

• The length of a name: Extremely long and short names are poor choices. Except in unusual circum-
stances, a one- or two-letter name does not convey enough information to clarify its meaning. At the
other extreme, very long, wordy names are distracting and often obscure the structure of an expression.

• Long expressions: Very long, complex expressions are difficult to write correctly and difficult to debug.
When a formula is long and complex or has repeated subexpressions, it is a good idea to break it into
several separate assignment statements.

• Parentheses: Use parentheses to clarify the structure of your expressions by enclosing meaningful
subexpressions. Use them when you are uncertain about the precedence of operators. However, use
parentheses sparingly; too many can be worse than too few. When three and four parentheses pile up
in one part of an expression, they can be hard to “pair up” visually. In this situation, moderation is
the key to good style.

• Increment and decrement operators: These operators can give nonintuitive results because of C’s
complicated rules about the order in which parts of an expression are evaluated. Until you fully
understand the evaluation rules, restrict your use to very short expressions and avoid combining these
operators with logical && and ||.

• When using division or modulus, be sure that there is no possibility that the divisor is 0. Dividing by
0 causes an immediate program crash in many systems and produces incorrect results on others. If a
0 divisor is possible, test for it.

4.9.3 New and Revisited Vocabulary

The most important terms and concepts discussed in this chapter:

garbage parse tree truth value
precedence test plan truth table
associativity debugging lazy evaluation
arity arithmetic operators increment operators
precedence table assignment operator postfix operator
operator combination operators prefix operator
binary operator side effect integer arithmetic
operand relational operators modulus
expression logical operators intermediate printouts
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Group Operators Complication

Arithmetic / Division by 0 or 0.0 is undefined.
/ Integer division is used if both operands are

integers; the result is an integer. The fractional
part is discarded.

% Not defined for floating-point values. For inte-
gers, the result is the remainder of an integer
division.

/, % If both arguments are integers and one is neg-
ative, the result may be indeterminate.

Assignment combinations +=, etc. These operators use the value of a memory vari-
able, then change it. Although C permits more
than one of these operators to be used in a sin-
gle expression, you should limit your own ex-
pressions to one.

Prefix increment and decrement ++, -- If you use a side-effect operator, do not use the
same variable again in the same expression.

Postfix increment and decrement ++, -- Remember that these operators return one
value for further use in expression evaluation
and leave a different value in memory.

Comparison == Remember not to use =.
Logical &&, ||, ! Remember that all negative and positive in-

tegers are considered true values. The only
false value is 0.

Logical &&, || There are special sequencing and lazy evalu-
ation rules for expressions that contain these
operators.

Figure 4.31. Difficult aspects of C operators.

C keywords and operators introduced or discussed in this chapter:

sizeof =, +=, -=, *=, /= ++x (preincrement)
(...) <, <=, >, >= x++ (postincrement )
+, -, *, / ==, != --x (predecrement )
integer /, % &&, ||, ! x-- (postdecrement )

4.9.4 Sticky Points and Common Errors

This has been a long chapter, filled with many facts about C semantics and C operators. The table in
Figure 4.31 gives a brief review of the difficult aspects of C operators to assist you in program planning and
debugging.

4.9.5 Where to Find More Information

• Program 4.A on the Applied C website shows a typical use of preincrement in a counting loop.

• The C operators for types int and double were described in this chapter. Operations on characters
will be explained in Chapter 8 and operations on bits are in Chapter 15.

• Operations for nonsimple types (compound objects with more than one part) will be discussed in
Chapters 10, 11, 12, and 13.
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• Type conversions (casts and coercions) are explained in Chapter 7.

• Two operators, the question mark and the comma, are not needed in simple programs and are explained
in Appendix D. Both are sequencing operators, that is, they have associated sequence points that force
left-to-right evaluation.

• More information about evaluation order is given in Appendix D

• When post-increment or post-decrement is used to modify a variable, the time at which the variable is
actually changed may vary from compiler to compiler. The C standard permits this variation, within
limits, to enable code optimization. The exact rules for when the side effect must and may happen
are complex. To explain them, one must first define sequence points and how they are used during
evaluation. Consult a standard reference manual for a full explanation.

4.10 Exercises

4.10.1 Self-Test Exercises

1. Look at the parse tree in Figure 4.4. Make a list that shows each operator (one per line) with the left
and right operands of that operator.

2. Write a single C expression to compute each of the following formulas:

(a) Metric unit conversion: Liters = ounces / 33.81474

(b) Circle: Circumference = 2πr

(c) Right triangle: Area =
bh

2

3. Each of the following items gives two expressions that are alike except that one has parentheses and the
other does not. You must determine whether the parentheses are optional. For each pair, draw the two
parse trees and compare them. If the parse trees are the same, the two expressions mean the same thing
and the parentheses are optional.

(a) d = a - c + b ; d = a - (c + b) ;

(b) e = g * f + h ; e = g * (f + h) ;

(c) d = a + b * c ; d = a + (b * c) ;

(d) e = f - g - h ; e = (f - g) - h ;

(e) d = a < b && b < c; d = a < (b && b) < c;

4. Using the following data values, evaluate each expression and say what will be stored in d or e:

int d, a = 5, b = 4, c = 32;
double e, f = 2.0, g = 27.0, h = 2.5;

(a) d = a + c - b ;

(b) d = a + c * b ;

(c) d = a * c - b ;

(d) e = g * 3.0 * (- f * h) ;

(e) d = a <= b ;

(f) e = f - (g - h) ;

(g) e = g / f ;

(h) e = 1.0; e += h ;

(i) d = (a < c) && (b == c) ;

(j) d = ++a * b-- ;
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5. Using the given data values, parse and evaluate each of the following expressions and say what will be
stored in k. Start with the original values for k and m each time. Check your precedence table to get the
ordering right.

double k = 10.0;
double m = 5.0;

(a) k *= 3.5;

(b) k /= m + 1;

(c) k += 1 / m;

(d) k -= ++m;

6. In the following program, circle each error and show how to correct it:

#include "stdio"
#define PI 3.14159;
int main (void)
{ double v;

printf( "Self-test Exercise/n" );
printf( "If I don’t get going I’ll be late!!";
puts( "Enter a number: " );
scanf( %g, v );
w = v * Pi;
printf( "w = %g \n", w );

}

7. Draw complete parse trees for the following expressions:

(a) t = x >= y && y >= z ;

(b) x = (y + z) || v == 3 && !(z == y / v) ;

8. What will be stored in k by the following sets of assignments? Use these variables: int h, k, m; .

(a) h=2; m=3; k = h / m ;

(b) h=5; m=16; k = h % m;

(c) h=10; m=3; k = h / m + h % m;

(d) h=17; m=5; k = h / m;

4.10.2 Using Pencil and Paper

1. Draw parse trees for the following expressions. Use the trees to evaluate the expressions, given the initial
values shown. Assume all variables are type double.

(a) a = 5; b = 4; c = 32; d = a + c / b ;

(b) w = 3; x = 30; y = 5; z = y + x / (- w * y) ;

(c) f = 3; g = 30; h = 5; d = f - g - h ;

(d) f = 3; g = 27; h = 2; d = f - (g - h) ;

2. Explain why you need to know the precedence of the C operators to find the answer to question 1a.
Explain why you need to know more than precedence to find the answer to question 1c. What else do
you need to know?

3. Look at the parse tree in Figure 4.29. Make a list that shows each operator (one per line) with the left
and right operands of that operator.

4. Parse and evaluate each of the following expressions and say whether the result of the expression is true
or false. Use these variables and initial values: int h = 0, j = 7, k = 1, n = -3;.
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(a) k && n

(b) !k && j

(c) k || j

(d) k || !n

(e) j > h && j < k

(f) j > h || j < k

(g) j > 0 && j < h || j > k

(h) j < h || h < k && j < k

5. Write a single C expression to compute each of the following formulas:

(a) Circle: Diameter = 2r

(b) Flat donut: Area = π × (outer_radius2 − inner_radius2)

(c) Metric unit conversion: cm = (feet× 12 + inches)× 2.54

6. Parse and evaluate each of the following expressions and say what will be stored in k and in m. Start with
the original value for k each time: int m, k = 10; .

(a) m = ++k;

(b) m = k++;

(c) m = -- k / 2;

(d) m = 3 * k --;

7. (Advanced) Draw parse trees for the following logical expressions and show the sequence points. Use
the trees to evaluate the expressions, given the initial values shown. For each one, mark any part of the
expression that is skipped because of lazy evaluation.

(a) w = 1; x = 5; y = 1; y && w != y && x

(b) w = 1; x = 5; y = 3; w <= x && x <= y

(c) x = 3; y = 0; z = 0; z != 0 || y && !x

(d) r = 5; w = 0; x = 5; y = 0; y || r || x && !w

8. What will be stored in k by the following sets of assignments? All variables are integers.

(a) h=4; m=5; k = h % m;

(b) h=14; m=7; k = h % m;

(c) h=7; m=15; k = h / m;

(d) h=7; m=-5; k = h / m;

(e) h=11; m=5; k = h / m + h % m;

9. (Advanced) Trace the execution of the following loop and show the actual output:

int num = 10;
while ( num > 5 ) {

if ( num % 3 == 0 ) num -= num / 3;
else if ( num % 3 == 1 ) num += 2;
else if ( num % 3 == 2 ) num /= 3;
else num--;
printf( "num = %i\n", num );

}
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4.10.3 Using the Computer

1. Your own size.

Write a short program in which you use the sizeof operator to find the number of bytes used by your C
compiler to store values of types int, char, and double.

2. Miles per gallon.

Write a program to compute the gas consumption (miles/gallon) for your car if you are given, as input,
miles, the number of miles since the last fill-up, and gals, the number of gallons of gas you just bought.
Start with a formal specification for the program, including a test plan. What is the appropriate type
for miles? For gals? For the answer? Explain why.

3. Centimeters.

Write a program to convert a measurement in centimeters to inches. The numbers of centimeters should
be read as input. Define int variable for centimeters, inches, and feet. Convert the centimeters to inches,
then convert the inches to feet and inches (use the % operator). Print the distance in all three units.
There are 2.54 centimeters in each inch and 12 inches in each foot.

Start with a formal specification for the program, including a test plan. Turn in the source code and the
output of your program when run using the data from your test plan.

4. A buggy mess.

In the following program, circle each error and show how to correct it. There are errors on nearly every
line, totaling at least 15 syntax errors, 4 syntax warnings, 1 linking error, and 3 serious logic errors.
When you have found as many errors as you can, download the code from the text website, correct the
errors, and try to compile the program. You have successfully debugged this code when you can get the
code to compile, run, give you three different multiplication problems, and correctly tell you whether the
answers are right or wrong.

#include stdio.h
#define SECRET = 17;

int main( void )
{

integer number wanted; // The number of problems you want
integer answer; // Your answer to the problem

printf( " Doing the Exercises \n );
" How many exercises do you want to do: " );

scanf( "%i", number wanted );
while ( number wanted > 0 );
{

printf( " What is %i * %i? ", SECRET, number wanted );
scanf( "%i", answer );
if ( answer = SECRET * number wanted) puts( "Great work." );
else puts( "You need a calculator!"}

}
print( " Thank you for playing today.\n" );
return;

}

5. Turf.
You are a building contractor. As part of a project, you must install artificial turf on some sports fields
and the adjacent areas. The owner has supplied length and width measurements of the field in yards and
inches. Your supplier sells turf in 1-meter-wide strips that are 4 meters long. Write a program that will
prompt the user for a pair of measurements in yards and inches (use integers). Convert each to meters
and print the answer. (There are 39.37008 inches in a meter.) Calculate the number of strips of turf
needed to cover the field. Round upward if a partial strip is needed.
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Start with a formal specification for the program, including a diagram and a test plan. Turn in the source
code and the output of your program when run using the data from your test plan.

6. Holy, holy, holy day.
A professor will assign homework today and does not want it due on anybody’s holy day. The professor
enters today’s day of the week (0 for Sunday, 1 for Monday, etc.) and the number of days, D, to allow the
students to do the work, which may be several weeks. Using the % operator, calculate the day of the week
on which the work would be due. If that day is someone’s holy day—Friday (Moslems), Saturday (Jews),
or Sunday (Christians)—add enough days to D to reach the following Monday. Print the corrected value
of D and the day of the week the work is due.

7. Ascending order.

Write a program to input four integers and print them out in ascending numeric order. Use logical
operators when you test the relationships among the numbers.

8. A piece of cake.

Write a complete specification for a program to calculate the total volume of batter needed to half fill
two layer-cake pans. The diameter of the pans is N and they are 2 inches deep. Read N as an input.
Write a test plan for this program, then write the program and test it. The formula for the volume of a
pan is

Volume = π × diameter2

4.0
× height

9. Circles.

Write a problem specification and a complete test plan for a program that calculates facts about circles.
Prompt the user to enter the diameter of the circle. If the input is less than 0.0, print an error comment.
Otherwise, calculate and print the radius, circumference, and area of the circle. Make your output
attractive and easy to read, and check it using your test plan.

10. Slope.

The slope of a line in a two-dimensional plane is a measure of how steeply the line goes up or down. This
can be calculated from any two points on the line, say p1 = (x1, y1) and p2 = (x2, y2) such that x1 < x2,
as follows:

Slope =
y2 − y1
x2 − x1

Write a specification and test plan for this problem. Then write a program that will input two coordinates
for each of two points, validate the second x coordinate, and print out the slope of the line.

11. What’s the difference?

Each term of an arithmetic series is a constant amount greater than the term before it. Suppose the
first term in a series is a and the difference between two adjacent terms is d. Then the kth term is
a+ (k − 1)× d. The sum of the first k terms is

Sum =
k

2
× (2a+ d× (k − 1))

Write a program that prompts the user for the first two terms of a series and the desired number of terms,
k, to calculate. From these, calculate d and the sum of the first k terms. Display a, d, k, and the sum.

12. Summing squares.

The sum of the squares of the first k positive integers is

1 + 4 + 9 + . . .+ k2 =
k × (k + 1)× (2k + 1)

6

Write a program that prompts the user for k and prints out the sum of the first k squares. Make sure to
validate the value of k that is entered.
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13. Greatest common divisor.
Some applications call for performing arithmetic on rational numbers (fractions). To do rational addition
or subtraction, one must first convert the two operands to have a common denominator. When doing
multiplication or division with fractions, it is important to reduce the result to lowest terms. For both
processes, we must compute the greatest common divisor (GCD) of two integers. A good algorithm for
finding the GCD was developed by Euclid 2300 years ago. In Euclid’s method, you start with the two
numbers, X and Y, for which you want the GCD. It does not matter which number is greater. Set x = X
and y = Y , then perform the following iterative algorithm:

(a) Let r = x % y.

(b) Now set x=y and y=r.

(c) Repeat steps (a) and (b) until y == 0.

(d) At that time, x is the GCD of X and Y .

Write a program that will input two numbers from the user and calculate and print their greatest common
divisor.
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Chapter 5

Using Functions and Libraries

In this chapter, we introduce the most important tool C provides for writing manageable, debuggable programs:
the function. In modern programming practice, programs are written as a collection of functions connected
through well-defined interfaces. We show how to use standard library functions, functions from a personal
library, and the programmer’s own (programmer-defined) functions.

Functions are important because they provide a way to modularize code so that a large complex program
can be written by combining many smaller parts. A function is a named block of code that performs a specified
task when called. Many functions require one or more arguments. Each argument is an object or piece of
information that the function can use while carrying out its specified task. Four functions were introduced in
Chapter 3: puts(), printf(), scanf(), and main(). The first two perform an output task, the third performs
input, while the fourth exists in every program and indicates where to begin execution.

Building a program is like building a computer. Today’s computer is built by connecting boards. Each
board is a group of connected chips, which consist of an integrated group of circuit components constructed by
connecting logic elements.

A large program is constructed similarly. At the top level, the program includes several modules, where each
module is developed separately (and stored in a separate file.) Each module is composed of object declarations
and functions. These functions, in turn, call other functions.

In a well-designed program, the purpose, or task, of each function is clear and easy to describe. All its
actions hang together and work at the same level of detail. No function is very long or very complex; each is
short enough to comprehend in its entirety. Complexity is avoided by creating and calling other functions to
do subtasks. In this way, a highly complex job can be broken into short units that interact with each other in
controlled ways. This allows the whole program to be constructed and verified much more easily than a similar
program written as one massive unit. Each function, then each module, is developed and debugged before it
is inserted into the final, large program. This is how professional programmers have been able to develop the
large, sophisticated systems we use today.

One function is special. In C, the main program is a special function. In most ways, it is like any function,
but main() is different in three significant ways:

• Every program must have a main() function.

• main() is the only function with two standard prototypes:

int main( void ); // appropriate for simple programs
int main( int argc, char* argv[] ); // used by some advanced programs

• Both prototypes of main() are known to the compiler; they do not need to be declared.

5.1 Libraries

We use functions from a variety of sources. Many come to us as part of a library, which is a collection of related
functions that can be incorporated into your own code. The standard libraries are defined by the C language
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standard and are part of every C compiler. In addition, software manufacturers often create proprietary libraries
that are distributed with the C translator and provide facilities not covered by the standard. Often, a group of
computer users shares a collection of functions that become a personal library. An individual programmer
might use functions from all of these sources and normally also defines his or her own functions that are tailored
to the tasks of a particular program.

Using library functions lets a programmer take advantage of the skill and knowledge of experts. In modern
programming practice, code libraries are used extensively to increase the reliability and quality of programs
and decrease the time it takes to write them. A good programmer does not reinvent the wheel.

5.1.1 Standard Libraries

C has about a dozen standard libraries; we use six of them in this text. The first one encountered by a
beginning C programmer is the standard input/output library (stdio), which contains the functions scanf()
and printf() that we have been using since Chapter 3. This library also contains functions for the input and
output of specific data types, which will be explained as those types are introduced, as well as functions for file
handling, which will be explained in Chapter 14.

The second most commonly used library is the mathematics library (math). This library contains imple-
mentations of mathematical functions such as sin(), cos() and log. The program examples in this chapter
illustrate the use of several of these functions; a complete list is given in Figure 5.6.

Another important library is the standard library (stdlib). It contains functions for generating random
numbers; a definition for abs(), the absolute value function for integers; and a variety of general utility
functions. Several of these will be introduced as the need arises in later chapters. Other libraries that we use
are the time library (time), the string library (string), and the character-handling library (ctype).

5.1.2 Other Libraries

The standard C libraries contain many useful functions for input and output, string handling, mathematical
computations, and systems programming tasks. These libraries provide expert solutions for common needs, but
they cannot cover every possible need. The standard libraries contain only a fraction of the useful functions that
might be written. The library functions are general-purpose utilities; many were designed for the convenience
of programmers creating the UNIX operating system. They are not tailored to the needs of students or scientists
and engineers who write C programs in the course of their work.

Many C implementations have additional libraries; for example, a graphics library for building screen
displays. Special-purpose libraries are often included with hardware that will be connected to a computer.
For example, a mobile-robotics kit such as Lego Mindstorm includes a library of functions that are used to
communicate with the robotics hardware. Finally, many companies that create software have libraries of code
relating to their products; by sharing these libraries, employees can become more efficient and products become
more uniform and predictable.

Programmers define their own functions to meet their needs. Some are special-purpose functions written
for one application and not relevant to other jobs. However, every programmer builds a collection of function
definitions that are useful again and again. These usually are simple functions that save a little writing, simplify
a repetitive task, or make a programmer’s job easier. Often, such a collection is shared with coworkers and
becomes a personal library. In this chapter, we suggest several functions that you may wish to put into your
own personal library because they will be useful again and again. We call this library “mytools”; it is discussed
in Section 5.9.2.

5.1.3 Using Libraries

Prototypes Every data object has a type. The type of a literal is evident from its form; the type of a
variable is declared along with the variable name. Similarly, every function has a type, called a prototype,
which must be known before the function can be used. The prototype defines the function’s interface; that
is, how it is supposed to interact with other functions. It declares the number and types of arguments that
must be provided in every call and the kind of answer that the function computes and returns (if any). This
information allows the compiler to check for syntax errors in the function calls.
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Nine tenths of an iceberg floats under the surface of the water; we see only a small part on top. Similarly,
each C library has two parts: a small public header file that declares the interface for the library and a large,
concealed code file that supports the public interface.

 header

library

stdio.h

The library:  
a precompiled, 
ready-to-link, 
version of the 
stdio functions.

Figure 5.1. A library is like an iceberg: only a small part is visible.

Header files. Each standard library has a corresponding header file whose name ends in .h. The header
file for a library contains the prototype declarations for all of the functions in that library. It may also define
related types and constants. For example, the header time.h defines a type named time_t, which can be used
to store the current date and time. This type is related to type int, and is chosen to be appropriate for the
local computer hardware and software. A useful constant, INT_MAX (the largest representable integer) is defined
in limits.h. Also, the mathematical constant PI is defined in math.h by many C implementations.

The header files for the libraries we have mentioned so far are

Standard input/output library: <stdio.h> Standard library: <stdlib.h>

Mathematics library: <math.h> Time library: <time.h>

Character handling: <ctype.h> String library: <string.h>

Biggest and smallest integers <limits.h> Personal library: "mytools.h"

To use one of the library functions in a program, you must include the corresponding header file in your
program. This can be done explicitly, by writing an #include command for that library, or you can make your
own header file that includes the header files for the standard libraries that will be used. Suppose you have
such a file called mytools.h, that includes stdio.h. Then if you write the command #include "mytools.h"
in your program, there is no need to write #include <stdio.h> separately.

In an #include command, angle brackets <...> around the name of the header file indicate that the
header and its corresponding library are installed in the compiler’s standard library area on the hard disk1. Use
quotation marks instead of angle brackets for personal libraries like mytools that are stored in the programmer’s
own disk directory rather than in the standard system directory.

1This file must be stored where your compiler can find it. It always works to put it in the same directory as your program code,
or in any directory that is on the compiler’s “search path”. To find out about the search path, ask your system administrator
to help you.

double double   drop  ( height

return 
 type

argument 
    type

function 
   name

parameter 
    name

) ;

Figure 5.2. Form of a simple function prototype.
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hypotenuse  =  sqrt  ( base*base + height * height

  store the
return value

function 
 name

argument  name  or 

) ;

positive_value = my_variable   fabs  (

argument expression 

) ;

Figure 5.3. Form of a simple function call.

5.2 Function Calls

A function call causes the function’s code to be executed. The normal sequential flow of control is inter-
rupted, and control is transferred to the beginning of the function. At the end of the function, control returns
to the point of interruption. To call a function, write the name of the function followed by a pair of parentheses
enclosing a list of zero or more arguments. In the following discussion, we refer to the function that contains
the call as the caller and to the called function as the subprogram or, if there is no ambiguity, simply the
function. Copies of the argument values are made by the caller and sent to the subprogram, which uses these
arguments in its calculations. At the end of function execution, control returns to the caller; a function result
also may be returned.

The function call must supply an argument value for each parameter defined by the function’s prototype.
The form of a simple prototype declaration is shown in Figure 5.2. It starts with the type of the answer returned
by the function. This is followed by the function name and a pair of parentheses. Within the parentheses are
zero or more parameter declaration units, consisting of a type and an identifier. The type tells us what kind
of argument is expected whenever the function is called. The identifier is optional in a prototype (but required
in a function definition).

The C compiler checks every function call to ensure that the correct number of arguments has been provided
and that every argument is an appropriate type for the function, according to the function’s prototype. It also
checks that the function’s result is used in an appropriate context. Generally, if a mismatch is found between
the function’s prototype and the function call, the compiler generates an error comment and does not produce
a translated version of the code. Some type mismatches are legal according to the type rules of C but they may
not be meaningful in the context of the program. In such cases, the compiler generates a warning comment,
continues the translation, and produces an executable program. However, the programmer should never ignore
warnings; most warnings are clues about logic errors in the program.

Calling library functions. The program example in Figure 5.4 demonstrates how to include the library
header files in your code and how to call the library functions. It uses standard I/O functions, the sqrt()
function from the mathematics library, and a function from the stdlib library to abort execution after an
input error.

Notes on Figure 5.4. Calling library functions.

First box: the #include commands.
• We #include <stdio.h> so that we can use printf() and scanf().

• We #include <math.h> for sqrt(), the square root function,

• We #include <stdlib.h> for the exit() function, which is discussed in Section 5.2.3.

Second box: calling exit().
• The function exit() is defined in stdlib; its prototype is void exit( int );. It can be used to exit from

the middle of a program after an error that makes continuation meaningless.

• The symbol EXIT_FAILURE is defined as 1. We use the symbolic name here, rather than a literal 1, as a
form of program documentation.
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• We use a simple if statement to test for an input error. If one is found, we display an error message, then
call exit(EXIT_FAILURE) or exit( 1 ). When control returns to the system, it will display a termination
comment with the exit code that written in the call on exit().

Grapefruits and Gravity with Functions

Calculate the time it would take for a grapefruit
to fall from a helicopter at a given height.
Enter height of helicopter (meters): -2
Error: height must be >= 0. You entered -2

Grapefruits has exited with status 1.

• No else statement is needed because exit() takes control immediately and directly to the end of the
program. In the flow diagram (Figure 5.17), it is diagrammed as a bolt of lightning because it “short-
circuits” all the normal control structures.

Third box: calling sqrt().

// ----------------------------------------------------------------------

// Grapefruits and Gravity again, with terminal velocity, using sqrt().

//

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define GRAVITY 9.8

int main( void )

{
double height; // height of fall (m)

double time; // time of fall (s)

double velo; // terminal velocity (m/s)

printf( " Grapefruits and Gravity with Functions\n\n"

" Calculate the time it would take for a grapefruit\n"

" to fall from a helicopter at a given height.\n"

" Enter height of helicopter (meters): " );

scanf( "%lg", &height ); // keyboard input for height

if (height < 0) { // exit gracefully after error

printf( " Error: height must be >= 0. You entered %g\n", height );

exit( EXIT_FAILURE ); // abort execution

}

time = sqrt( 2 * height / GRAVITY ); // calculate the time of fall

velo = GRAVITY*time; // terminal velocity of fruit

printf( " Time of fall = %g seconds\n", time );

printf( " Velocity of the object = %g m/s\n", velo );

return EXIT_SUCCESS;

}

Figure 5.4. Calling library functions.
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• The sqrt() function computes the square root of its argument. To call this function, we write the argument
in parentheses after the function name. In this call, the argument is the value of the expression 2*h/GRAVITY.
The multiplication and division will be done, and the result will be sent to the sqrt() function and become
the value of the sqrt()’s parameter. Then the square root will be calculated and returned to the caller.
When a function returns a result, the caller must do something with it. In this case, it is stored in the
variable named t, then used in the next two lines of main().

• A function prototype describes the function’s interface; that is, the argument(s) that must be brought into
the function and the type of result that is sent back. In this case, one argument is brought in and one result
is returned. We can diagram the passage of information to and from the function like this:

BodyInterface
t = sqrt( 2*h / GRAVITY ); return

double sqrt( double )

???

int main( void)

• In general, spacing makes no difference to the compiler. We could have written

time=by the standard to be an ( 2*height/GRAVITY); or
time =sqrt (2 *height / GRAVITY); or
time= sqrt (2* height/GRAVITY);

However, spacing makes an important difference in the readability of a program. You should use spacing
selectively to make formulas as readable as possible. Current style guidelines call for spaces after the opening
parenthesis and before the closing parenthesis.

The output from a successful run.

Grapefruits and Gravity with Functions

Calculate the time it would take for a grapefruit
to fall from a helicopter at a given height.
Enter height of helicopter (meters): 30

Time of fall = 2.47436 seconds
Velocity of the object = 24.2487 m/s

Grapefruits has exited with status 0.

Fourth box: the return statement.
• In previous programs, we have written return 0;. Here we introduce another way to write the same thing:
return EXIT_SUCCESS. The stdlib.h header file defines EXIT_SUCCESS to be a synonym for 0, and some
programmers prefer to use the symbolic name rather than the numeric value.

• The last line of the output, above, shows the message printed by the operating system after the program
terminated. The status code that is displayed is the value that was written in the return statement.

5.2.1 Call Graphs

We use flow diagrams (as in Figure 5.17) to visualize the flow of control through the statements of a single
function or the transition from one function to another during execution. Another kind of diagram, a function
call graph, is useful for showing the relationships between functions that are established by function calls. In
a function call graph (see Figure 5.5), a box at the top is used to represent the function main(). Below it,
attached to the branches of a bracket, is one box for each of the functions called by the main program.2 As
far as possible, these are listed left to right in the order in which they appear in the program. Each function
has only one box; if it is called several times, there is no sign of that in the diagram. A very simple program
is graphed in Figure 5.5.

2Various elaborations of this basic scheme are in use. In one version, the function arguments are written on the arrows. We
choose to introduce the concepts by using the simplest scheme.
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main

printf scanf sqrt

in stdio library

exit

in stdlib library in math library

Figure 5.5. Call graph for Figure 5.4: Calling library functions.

The pattern of one box pointing at others is repeated when diagramming a more complex program; a box
and a connection are drawn for each function called by a first-level function. In Figure 5.12, the main program
calls a programmer-defined function, banner() (Figure 5.13), which in turn, calls functions named time() and
ctime() from the time library. The resulting function call graph, shown in Figure 5.14, has boxes at three
levels. In a large program, a function call graph will have many boxes at several levels and may have complex
dependencies among the functions (arrows may point from a lower level to an upper level). We will use call
graphs to visualize the relationships among functions in future program examples. The graph becomes more
and more important as the number of functions increases and the interactions among functions become more
complex.

In some programs it becomes beneficial to add information to the call graph concerning what is being
passed between the functions. This would require an arrow for every parameter in every function call. If a
program makes many function calls, this can get very complicated very quickly. Therefore, for the sake of
clarity, we omit parameter and return information from the call graphs presented in this text.

5.2.2 Math Library Functions

Most of the functions in the math library are familiar to anyone who has studied high-school algebra and
trigonometry. These include the trigonometric, exponential, log, and square root functions. Some of the

Name Function Argument type(s) Return type

fabs(x) Absolute value double double

ceil(x) Round x up double double

floor(x) Round x down double double

rint(x) Round x to nearest integer double double

cos(x) Cosine of x double double

sin(x) Sine of x double double

tan(x) Tangent of x double double

acos(x) Arc cosine of x double double

asin(x) Arc sine of x double double

atan(x) Arc tangent of x double double

atan2(y, x) Arc tangent of y/x double, double double

cosh(x) Hyperbolic cosine of x double double

sinh(x) Hyperbolic sine of x double double

tanh(x) Hyperbolic tangent of x double double

exp(x) ex double double

log(x) Natural log of x double double

log10(x) Base 10 log of x double double

sqrt(x) Square root double double

pow(x, y) xy double, double double

fmod(x,y) x−N × y for largest N such that N × y < x double, double double

Figure 5.6. Functions in the math library.
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floor(y)=0.0floor(x)=floor(w)= floor(z)=1.0

¥+ -¥ 1 20-1-2
x=-1.6 y=.8 z=1.4w=-2.2

-3

-2-3

Figure 5.7. Rounding down: floor().

math library functions are less familiar; these are briefly explained in the next several paragraphs, with a few
important functions from other libraries.

int abs( int n ). Although this is a mathematical function, it is part of the standard library (stdlib), not the
math library; to use it, a program must #include <stdlib.h>. The result is the absolute value of n. (That is,
if n is negative, the result has the same value as the argument, but with a positive sign instead of a negative
sign. If the argument is zero or positive, the result is the same as the argument.)

double fabs( double x). To use this function, #include <math.h>. This is just like abs() but it works
for a double argument instead of an int, and it returns a double result. The result is the absolute value of x.
(That is, if x is negative, the result has the same value as the argument, but with a positive sign instead of a
negative sign. If the argument is zero or positive, the result is the same as the argument.)

double fmod( double x, double y ). To use this function, #include <math.h>. C has an operator, %,
that computes the modulus function on integers; fmod() computes a related function for two doubles. The
result of fmod(x, y) is the floating-point remainder of x/y More precisely, fmod(x, y) = x - k*fabs(y) for
some integer value k. The result has the same sign as x and is less than the absolute value of y. The function
is implementation-defined if y==0. A few examples might make this clear:

fmod( 10.0, 2.0 ) = 0 and k = 5
fmod( -10.0, 2.9 ) = -1.3 and k = 3
fmod( 10.5, -1.0 ) = .5 and k = 10
fmod( 10.5, 1.1 ) = .6 and k = 9
fmod( 34.5678, .01 ) = 0.0078

The last example, above, hints at an application for fmod(). Suppose a bank calculates the amount of interest
due on an account, but will add only an even number of cents to the account balance. The fractional cents must
be subtracted from the calculated interest before adding the interest to the account balance. This function lets
us easily calculate the fractional cents.

double atan2( double x, double y). This function computes the arc tangent of x/y. It is explicitly
defined for y=0 is π/2 and has the same sign as x. This should be used in place of atan() for any argument
expression that might have a denominator of 0.

ceil(y)=1 ceil(z)=2

¥+ -¥ 1 20-1-2
x=-1.6 y=.8 z=1.4w=-2.2

-3

-2 ceil(x)=ceil(w)= -1

Figure 5.8. Rounding up: ceil().
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rint(y)rint(x)rint(w) rint(z)

¥+ -¥ 1 20-1-2
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Figure 5.9. Rounding to the nearest integer: rint().

Rounding and truncation. Suppose that we are given a double value and wish to eliminate the fractional
part. The math library provides three functions that correspond to three of basic ways to do this job. The
assignment operator provides a fourth way.
• The function floor() rounds down, that is, the result will be an integral value that is closer to −∞ than

the argument, as illustrated in Figure 5.7. This function returns a double value. For example, floor(-1.6)
is -2.0 and floor(.9999999) is 0.0.

• The function ceil() (short for ceiling) rounds up, that is, the result will be an integral value that is closer
to +∞ than the argument, as illustrated in Figure 5.8. This function returns a double value.

• The function rint() does what we normally refer to as “rounding”. It rounds to the nearest integral value
and returns it as a double value, as illustrated in Figure 5.9. A matching function, lrint(), returns the
result as an integer, if it is possible to represent it as an integer. For example, rint(-1.6) is -2.0 and
rint(.9999999) is 1.0. Compare this result to lrint(.9999999) = 1

• When a double value is assigned to an integer variable, the fractional part is truncated , that is, the decimal
places are simply discarded. This is the same as rounding positive numbers down (toward 0) and rounding
negative numbers up (toward 0).

5.2.3 Other Important Library Functions

The date and time. The date and time at which a program is executed is very important for many kinds of
output, including student work. Modern computers have an internal battery-operated clock. Modern systems
keep that clock accurate by periodically synchronizing it to a time standard accessed over the internet. C
provides a variety of functions and type definitions to help programmers use the clock3. Most of the time
library is too difficult for this chapter, but a few items can be used simply and are presented here.
• The data type time_t is defined4 by the standard to be an integer that has enough bits to hold whatever

encoding of date and time is used by the local system. It might be different from system to system, but it
is always exactly right to store the time. The program in Figure 5.13 shows how to declare a variable of
this type and use it to store the current time.

• The time( ) function reads the system clock and returns an integer encoding of the time and date. It is
described in Appendix F and discussed in more detail in Chapter 12. Until then, if you want to read the
system clock, you should call the time( NULL ) and store the result in a time_t variable.

• The ctime( ) function is used to convert the time from the coded form to a string that can be easily
printed and understood. The easiest way to use ctime( ) is to call the function from the argument list of

3These are described in Appendix F and parts are discussed in detail in Chapter 12.
4Until now, we have covered only three types: double, int, and char. The C language actually supports many predefined

types and permits the programmer to define his own. These will be introduced gradually in future chapters.
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Figure 5.10. Truncation via assignment.
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Library Purpose Name and Usage Argument Return type

stdlib Absolute value k = abs( amount ); int int

stdlib Abort execution after an error exit(1) int returns to system
time Data type for storing the time time_t now; creates a time variable
time Read system clock now = time( NULL ) NULL the time encoded as an integer
time Convert time code for printing printf( ctime( &now )) integer a printable string

Figure 5.11. A few functions in other libraries.

a printf() function. The argument to ctime( ) must be the address of the time_t variable that was set
by calling time(NULL). Figure 5.13 shows how to do this.

Exception conditions. If a program encounters a serious error and cannot meaningfully continue, the
appropriate action is to stop execution immediately. C++ and Java are newer languages that are built upon
C; both include all the C operators and control structures, but provide an additional modern facility, called
an exception handler, for managing errors and other unusual and unexpected conditions. C is an old language
and it does not provide an exception handler. However, it does provide a function that aborts a program and
“cleans up” the environment before returning to the system. In this text, the exit() function will be used
when it would be appropriate to use an exception in a modern language.
• The function exit() is defined in stdlib; its prototype is void exit( int );. It can be used to exit from

the middle of a program after an error that makes continuation meaningless.

• The constant EXIT_FAILURE is defined in stdlib.h as a synonym for the number 1 and the constant
EXIT_SUCCESS is defined as a synonym for the number 0. These can be used as arguments to exit(), but
a programmer can also use any integer as the argument or invent his or her own codes. The system should
display the code on the screen after the program exits.

5.3 Programmer-Defined Functions

Functions serve three purposes in a program: They make it easy to use code written by someone else; they
make it possible to reuse your own code in a new context; most important, though, they permit breaking a
large program into small pieces in such a way that the interface between pieces is fixed and controllable. A
programmer may (and generally does) modularize his or her program by dividing the entire job into smaller
tasks and writing a programmer-defined function for each task.

Functions can take no arguments or many, of any combination of types, and can return or not return values.
The type of a function is a composite of the type of value it returns and the set of types of its arguments.

Function Prototype
main() int main( void );
exit() void exit( int );
sqrt () double sqrt( double );

We begin the study of programmer-defined functions by creating functions of two types: double→double and
void→void.

Double→double functions. Some functions calculate and return values when they are called. For example,
in Figure 5.4, the function sqrt() calculates a mathematical function and returns the result to main(), which
stores it in a variable and later prints it. The functions sqrt(), log(), sin(), and cos() all accept an argument
of type double and return an answer of type double. We say, informally, that these are double→double
functions because their prototypes are of the form double funcname(double). A double→double function
must be called in some context where a value of type double makes sense. Often, these functions are called from
the right side of an assignment statement or from a printf() statement. Examples of calls on double→double
functions follow:

time = sqrt( 2 * height / GRAVITY );
printf( "The natural log of %g is %g\n", x, log( x ) );
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Void functions. Some functions return no value to the calling program. Their purpose is to cause a side
effect; that is, perform an input or output operation or change the value of some memory variable. These
functions are called void functions because their prototypes start with the keyword void instead of a return
type. Void means “nothing”; it is not a type name, but we need it as a placeholder to fill the space a type name
normally would occupy in a prototype. We need some keyword because, if the return-type field in a function
header is left blank, the return type defaults to int.5

Some void functions, such as exit(), require arguments; others, do not. The latter are called void→void
functions and have prototypes of the form void funcname( void ). To call a void→void function, write the
function name followed by empty parentheses and a semicolon. Often, the function call will stand by itself on
a line.

5.3.1 Function syntax.

A function has two parts: a prototype and a definition. When writing a program, prototypes for all the
functions are normally written at the top, between the preprocessor commands and the beginning of main().
Function definitions are written at the bottom of the file, following the end of main().

A function definition, in turn, has two parts: a function header (which must correspond to the prototype)
and a function body, which is a block of code enclosed in curly brackets. The body starts with a series
of (optional) declarations. These create local variables and constants for use by the function. The local
declarations are followed by a series of program statements that use the local variables and the function’s
arguments (if any) to compute a value or perform a task. The body may contain one or more return statements,
which return a value to the calling program.

The complete set of rules for creating and using functions in C is extensive and complex; it is presented
in some detail in Chapter 9. In this section, we begin by writing the two types of functions discussed above.
We illustrate how to define these function types, write prototypes for them, call them, and draw flowcharts
(using barred boxes) to show the flow of control. We give a few examples and some brief guidelines so that the
student may begin using functions in his or her own programs. The next figures illustrate, in context, how to
write the parts of void→void and double→double functions.

5.3.2 Defining Void→Void Functions

We show how to write void→void functions first, using Figure 5.12 to illustrate the discussion. This program
uses a void→void function to print user instructions and error comments. We ask the user to enter the number
of passengers in a car. If the input number is greater than 5, we print an error message and beep four times.

Notes on Figures 5.12 and 5.13. Calling void→void functions.

First box: the standard header files.
• The prototypes for the time library and the standard I/O library are brought into the program by these
#include statements.

• The header <time.h> is included because one of the programmer-defined functions will call functions from
the time library. When we include prototypes at the top of a program, either explicitly or by including a
header file, the corresponding functions can be called anywhere in the program.

Second box: the prototypes.
• Either a prototype declaration or the actual function definition should occur in a program before any calls

on the function.6

• The include statements bring in prototypes for the standard functions. However, we must write prototypes
for the three functions defined at the bottom of this program, beep(), instructions(), and banner().

5This default makes no sense in ISO C; it is an unfortunate holdover from pre-ISO days, when C did not even have a type
void. The default to type int was kept in ISO C to maintain compatibility with old versions of C.

6If a function is called before it is declared, the C compiler will construct a prototype for that function that may or may not
work properly.
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• The prototype for every void→void function follows the simple pattern shown here: the word void followed
by the name of the function, followed by the word void again, in parentheses. Every prototype ends in a
semicolon.

Third and fourth boxes: the function calls.
• These lines all call a void→void function. The call consists of the function name followed by empty paren-

theses. Often, as with the calls on instructions() and banner(), a void→void function call will stand
alone on a line.

• Often a void→void function is used to give general instructions or feedback to the user, as in the second
box. Sometimes, one is used to inform the user that an error has happened, as is the case with the call on
beep() in the third box. Such calls often form one clause of an if statement.

Fourth and fifth boxes: two easy function definitions.
• We define two void→void functions: instructions() and beep(). We use a comment line of dashes to mark

the beginning of each function so that it is easy to locate on a video screen or printout.

The banner function is shown in Figure 5.13.

#include <stdio.h>

#include <time.h>

// Prototype declarations for the programmer-defined functions. ----------

void banner( void );

void instructions( void ) ;

void beep( void );

int main( void )

{

int n_pass; // Number of passengers in the car.

banner(); // Display output headings.

instructions(); // Display instructions for the user.

scanf( "%i", &n_pass );

if (n_pass > 5) beep(); // Error message for n>5

else printf( " OK! \n" ); // Success message for good entry

return 0;

}

// -----------------------------------------------------------------------

void instructions( void ) // function definition

{

printf( " This is a legal-passenger-load tester for 6-seat sedans.\n"

" Please input the number of passengers you will transport: " );

}

// -----------------------------------------------------------------------

void beep( void ) // function definition

{

printf( " Bad data! \n\a\a\a\a" ); // error message and beeps

}

Figure 5.12. Using void→void functions.
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This function is part of the program in Figure 5.12, and belongs at the bottom of the same source-code file.

// -----------------------------------------------------------------------

void banner( void ) // Print a neat header for the output.

{

time_t now = time(NULL);

printf( "\n-------------------------------------------------------\n" );

printf( " Patience S. Goodenough\n CS 110\n ");

printf( ctime( &now ) );

printf(

"-------------------------------------------------------\n" );

}

Figure 5.13. Printing a banner on your output.

• Each function definition starts with a header line that is the same as the prototype except that it does not
end in a semicolon. Following each header line is a block of code enclosed in curly brackets that defines the
actions of the function.

• Most void→void functions, like these two, perform input or output operations. The symbol \a, used in
the beep() function, is the ASCII code for a beeping noise. Many systems will emit an audible beep when
this symbol is “printed” as part of the output. Other systems may print a small box instead of emitting a
sound. Some systems give no audible or visible output.

The output
Here is the output from two test runs (the second banner has been omitted):

-------------------------------------------------------
Patience S. Goodenough
CS 110
Sat Aug 9 18:21:17 2003

-------------------------------------------------------
This is a legal-passenger-load tester for 6-seat sedans.
Please input the number of passengers you will transport: 2
OK!

Tester has exited with status 0.
---------------------------------------------------
This is a legal-passenger-load tester for 6-seat sedans.

Library functions are surrounded by shaded boxes; programmer-defined functions are shown with no sur-
rounding box.

beep banner  scanf

 main

 instructions

in stdio library

printf

in time library

 time  ctime

Figure 5.14. A call graph for the beep program.
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Please input the number of passengers you will transport: 10
Bad data!

Tester has exited with status 0.

Figure 5.13 a longer function definition.
• We define a void→void function named banner() that prints a neat and visible output header containing

the programmer’s name and the date and time when the program was executed. The date and time are
produced by calling functions from the time library.

• The first line of this function declares a variable named now of type time_t and initializes it to the current
time by calling time( NULL ).

• Then we call ctime() to convert the coded date and time into a string that can be printed. The third call
on printf() shows how do use this function. Be sure to write the ampersand when you copy this code.

• An output header, similar to the one this function produces should be part of the output produced by
every student program. You should use it with everything you hand in to the teacher. One way to do this
is to start your own personal file, say mytools.c containing reuseable code. Make a matching file called
mytools.h containing the prototypes for the functions in mytools.c. Include mytools.h in every main
program you write, and add both mytools files to the project you create for your program.

5.3.3 Returning Results from a Function

A function that returns a value is fundamentally different from a void function. A void function simply causes
some side effect, such as output, like banner() in Figure 5.19. The call on such a function forms a separate
statement in the code. In contrast, a function that returns a value interacts with the rest of the program by
creating information for further processing. A return statement is used to send a result from a function back
to the caller. It is represented in the diagram in Figure 5.21 as a tab sticking out of the function’s interface.
A return statement can be placed anywhere in the function definition, and more than one return statement
can be used in the same function.7

A function that returns a value can be called anywhere in a C statement that a variable name or literal
of the same type would be permitted. Often, as in the call on f() in Figure 5.19, a function is called in
an assignment statement. The return address for this call is in the middle of the statement, just before the
assignment happens. When the value is returned from the call, main() will resume execution by assigning the
returned value to the variable z.

If a function is called in the middle of an expression, the result of the function comes back to the calling
program in that spot and is used to compute the value of the rest of the expression. The call on exp() in
Figure 5.19 illustrates this. The function is called from the middle of a return statement: return y * exp(y).
The return address for this call is in the middle of the statement, just before the multiplication happens. After
a value is returned by exp(), it will be multiplied by the value of y and the result returned to main().

Finally, as in the call on g() in Figure 5.19, a function can be called from the argument list of another
function. It is quite common to nest function calls in this way.

5.3.4 Arguments and Parameters

Function parameters introduce variability into the behavior of a function. A void→void function without
parameters always does the same thing in the same way.8 In contrast, introducing even one parameter permits
the actions of a function and its results to depend on the data being processed. By parameterizing a piece of
code, we can make it useful under a much more general set of circumstances.

Formal parameters are part of a function definition and specify a set of unknowns; arguments are part
of a function call and supply values for those unknowns. In Figure 5.21, parameters are represented by notches
along the left edge of each function’s interface. Right-facing arrows connect each argument to the notch of the
corresponding parameter; these arrows represent the direction in which information flows from the caller to the
subprogram.

7However, we strongly recommend using a single return statement at the end of the function.
8An exception to this occurs if the function uses global variables or user input.
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The function f() has one parameter, a double value named y. Even if other objects in the program have
the same name, the parameter y in f() will be a distinct object, occupying a separate memory location. It is
quite common to have two objects with the same name defined in different functions.

Looking at the list of library functions in Figure 5.6, we see that the exp() function has one parameter of
type double. The name of this parameter is not known because exp() is a library function and its details have
been concealed from us. During the calling process, the argument value is stored in the parameter variable,
making a complete object.

A function can be void or have one or more parameters. Its prototype defines the correct calling sequence;
that is, the number, order, and types of the arguments that must be written in a call. The call must supply one
argument expression per parameter;9 if the number of arguments does not match the number of parameters,
the program will not compile. When a function call is executed, each argument expression in the call will
be evaluated and its value will be passed from the caller to the subprogram, where it will be stored in the
corresponding parameter. For example, the argument in the call on f() is the value of the variable named x in
the main program. This value is a double, so it can be stored in the double parameter with no conversion.
An ISO C prototype states the name of a function, the types of its parameters, and the return type. The
parameters also may be named in the prototype, but such names are optional and often omitted. A function
header states the same information, except that parameter names are required in the function header.

Inside a function, the parameter names are used to refer to the argument values; the first parameter name
in the function header refers to the first argument in the function call, and so on. In Figure 5.21, when main()
makes the call f(x), the value of x is copied into the parameter named y. Within the body of f(), the value
stored in this parameter will be used wherever the code refers to the name y. During execution of f(), this
value is further copied and stored in the parameter variable of exp().

Formal Parameter Names The function header (which is the first line of the function definition) the name
of a function, the types of its parameters, and the return type These names provide a way for the programmer
to refer to the parameters in the function’s code.

Any legal name may be given to a formal parameter. It may be the same as or different from the name of
a variable used in the function call, and both can be the same as or different from the optional name in the
function’s prototype.10 The names chosen do not affect the meaning of the program because argument values
are matched up with parameters by position, not by name. For example, the main program in Figure 5.15 uses
a variable named h in the call on the drop() function (Figure 5.18). Within drop(), however, the parameter
is named height, so the value of main’s h will be stored in drop’s height.

5.3.5 Defining a Double→Double Function

We use Figures 5.15 through 5.18 to illustrate the construction and call of a double→double function, which
is somewhat more complicated than a void→void function because argument information must be passed into
the function and a result must be returned to the caller.

Notes on Figure 5.15. The grapefruit returns.

First box: the prototypes.
• A prototype for a double→double function gives the function name and specifies that it requires one double

parameter and returns a double result. The general form is

double function_name( double parameter_name );

where the parameter name is optional.

• This box contains a prototype declaration for the function named drop(). It states that drop() requires one
argument of type double and returns a double result. This information permits the C compiler to check
whether a call on drop() is written correctly.

• There is also a prototype declaration for the void→void function named title(), which is similar to the
instructions() function in the previous example.

9Some functions accept a variable number of arguments; scanf() is an example. However, the details of how this is
accomplished are beyond the scope of this text.

10However, it is good style to use the same name in the prototype and the function header.
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Second box: the void→void function call. The prototype for title() must precede this function call.
The definition of the function is at the bottom of the program, in the fourth box.

A function call interrupts the normal sequence of execution. Look at the flow diagram in Figure 5.17. The
first statement is the call on title(). When that call is executed, control leaves the main sequence of boxes
and travels along the dotted line to the beginning of the title() function. Then control proceeds, in sequence,
to the return statement, and finally returns to where it came from along the second dotted arrow.

Third box: the double→double function call. This box calls drop(). The prototype for drop() was given
in the first box and the function is defined in Figure 5.18, but would be placed in the same source file, below
the definition of title().

The form of any function call must follow the form of the prototype. When we call a double→double

A grapefruit is dropped from a helicopter hovering at height h. This continues development of the program
in Figure 5.4. The drop() function is shown in Figure 5.18.

// -----------------------------------------------------------------------

// Modify the Grapefruits and Gravity program by using a double→double

// function to compute the travel time of the grapefruit.

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define GRAVITY 9.81

void title( void );

double drop( double height ); // Prototype declaration of drop.

int main( void )

{

double h; // height of fall (m)

double t; // time of fall (s)

double v; // terminal velocity (m/s)

title(); // Call function to print titles.

printf( " Enter height of helicopter (meters): " );

scanf( "%lg", &h ); // keyboard input for height

t = drop( h ); // Call drop. Send it the argument h.

v = GRAVITY * t; // velocity of grapefruit at this time

printf( " Time of fall = %g seconds\n", t );

printf( " Velocity of the object = %g m/s\n", v );

return 0;

}

// ---------------------------------------------------------------

void title( void ) {

printf(" Grapefruits and Gravity with a Drop Function\n\n"

" Calculate the time it would take for a grapefruit\n"

" to fall from a helicopter at a given height.\n" );

}

Figure 5.15. The grapefruit returns.
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in math library

main

droptitle printfscanf

sqrtin stdio library
in stdlib library

exit

Figure 5.16. Call graph for the grapefruit returns.

function, we must supply one argument expression of type double. In this call, the argument expression is a
simple variable name, h. When we call drop(), we send a copy of the value of h to the function to be used in
its calculations.

A function call interrupts sequential execution and sends control into the function. Figure 5.17 depicts this
interruption as a dotted arrow going from the function call to the beginning of the function. From there, control
flows through the function to the return statement, which sends control back to the point of interruption, as
shown by the lower dotted arrow. When a double→double function returns, it brings back a double value,
which should be either used or stored. In this example, we store the result in the double variable t.

Program output. Here is one set of output from the grapefruit program (the banners and termination
messages have been omitted):

Grapefruits and Gravity with a Drop Function

Calculate the time it would take for a grapefruit
to fall from a helicopter at a given height.
Enter height of helicopter (meters): 872

Time of fall = 13.3401 seconds
Velocity of the object = 130.733 m/s

Notes on Figure 5.18. Definition of the drop() function. We show how to write the definition of a
double→double function.

The comment block and the function header.
• Every function should start with a block of comment lines, the function comment block, that separate

the definition from other parts of the program and describe the purpose of the function. Comment marks
(/*...) begin the first line and end the last line of the block comment. These comments provide a neat
and visible heading for the function.

• The first line of a function definition is called the function header. It must be like the prototype except that
the parameter name is required (not optional) in the header and the header does not end with a semicolon.

• A parameter can be given any convenient name, which need not be the same as the name of the argument
that will appear in future function calls. A new variable is created for the parameter and can be used only
by the function itself.

• When a function is called, the expression in parentheses is evaluated and its value passed into the function
and used to initialize the parameter variable. This value is called the actual argument. Within the function,
the parameter name is used to refer to the argument value. In the function call, the argument was main()’s
variable h, but the drop() function’s parameter is named height. This is no error. A double→double
function can be called with any double argument value. The argument can be the result of an expression,
a variable with the same name, or a variable with a different name. Within the function, the parameter
name (height) is used to refer to the argument value.
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This is a flow diagram of the program in Figures 5.15 and 5.18. Function calls are depicted using a
box with an extra bar on the bottom to indicate a transfer of control. The dotted lines show how the
control sequence is interrupted when the function call sends control to the beginning of the drop() function.
Control flows through the function then returns via the lower dotted line to the box from which it was called.
The call on fatal() (after an error) ends execution immediately and returns control to the operating system.

  

double time

2*height
     G

 time = 

return 
time

drop 
(height)

height <0
      ?

false

true

v = Velocity at impact = GRAVITY*t
Print  t  and  v.

  double h, t, v

main ( )

 t = drop(  h )

return

title(     )

Prompt for 
height.
Read h

title Print title. return

Print error:
bad height

exit(1)

Figure 5.17. Flow diagram for the grapefruit returns.

This function is called from Figure 5.15.

// ---------------------------------------------------------------------- ---

// Time taken for an object dropped from height meters to hit the ground.

double drop( double height )

{

double time; // create a local variable

if (height < 0) { // exit gracefully after error.

printf( " Error: height must be >= 0. You entered %g\n", height );

exit( 1 ); // abort execution

}

time = sqrt( 2 * height / GRAVITY ); // calculate the time of fall

return time;

}

Figure 5.18. Definition of the drop() function.
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First box: a local variable declaration. The code block of a function can and usually does start with
declarations for local variables. Memory for these variables will be allocated when the function is called and
deallocated when the function returns. These variables are for use only by the code in the body of the function;
no other function can use them. In the example program, we declare a local variable named time.

Second box: the function code. Statements within the function body may use the parameter variable and
any local variables that were declared. References also may be made to constants defined globally (at the top of
the program). The use of global variables is legal but strongly discouraged in C. The statements in this function
are like the corresponding lines of Figure 5.4 except that they use the parameter name and local variable name
instead of the names of the variables in the main program.

Inner box: calling another function. An error has been detected, so we print an appropriate comment
and call exit( 1 ) to terminate the program immediately.

Last box: the return statement. On completion, a double→double function must return a result of type
double to its caller. This is done using the return statement. A return statement does two things: it sends
control immediately back to the calling program and it tells what the return value (the result) of the function
should be. It does not need parentheses. In Figure 5.18, the result from sqrt() is stored in the local variable
time. To make that answer available to the caller, we return the value of time. On executing the return
statement, the value of time is passed back to the caller and control is returned to the caller at the statement
containing the function call, as depicted by the dotted line in Figure 5.17.

5.4 Organization of a Module

Generally, a program has a main() function that calls several other library and programmer-defined functions.
To compile main(), the compiler needs to know the prototype of every function called. One way this infor-
mation can be supplied is by putting main() at the bottom of the module, while the definitions of the other
functions come before it. However, many programmers dislike having the main program at the end of the file
and it is customary, in C, to put main() at the top. When this is done, prototypes for all the functions that
main() calls must be written above11 it. This pattern has been followed in every program example given so
far. There is one major exception to this organizational guideline: When a function is so simple that its entire
definition can fit on one line, the function itself often is written at the top of the file in place of a prototype.

When you call a function from one of the C libraries, you use code that is already compiled and ready
to link to your own code (see Chapter 5). Header files such as stdio.h and math.h contain prototypes (not
C source code) for the precompiled library functions. When your code module uses a library function you
#include the library header file at the top. This causes the preprocessor to insert all the prototypes for the
library functions into your module, making it possible for the compiler to properly check your calls on the
library functions. The order of parts, from the top of the source file to the bottom follows. These principles
lead to the following layout for the parts in a simple program:

• #include commands for header files.

• Constant definitions and type declarations.12

• Prototypes (function declarations) and one-line functions.

• main(), which contains function calls.

• Function definitions, possibly containing more calls.

• Figure 5.19 illustrates the principles with a complete program and two functions.

Notes on Figure 5.19. Functions, prototypes, and calls.

11The prototypes also may be written inside the calling function. However, we wish to discourage this practice.

12Type declarations will be discussed in Chapters 11, 12 and 13.
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A function’s prototype may be given first, then the call, and finally the full definition of the function, like
function f() here. Alternatively, the function may be fully defined before it is called; for example, function
g() is defined before main(), which calls it.

#include <stdio.h>

#include <math.h>

#define MIN 10.5

#define MAX 87.0

double f( double y ); // Prototype for function f, defined below.

double g( double y ) { return( y * y + y ); } // Definition of function g.

int main( void )

{

double x, z;

banner();

printf( "\n Enter a value of x between %.2f and %.2f: ", MIN, MAX );

scanf( "%g", &x );

z = f( x ) ;

printf( "\n The value of x * exp(x) is: %g \n", z );

printf( "\n The value of x * x + x is: %g \n", g( x ) );

return 0;

}

// -------------------------------------------------------------------

// Definition of function to calculate f = y * e to the power y. -----

double

f( double y )

{

return y * exp( y ) ;
}

Figure 5.19. Functions, prototypes, and calls.

This is a function call graph for the functions, prototypes, and calls of the program in Figure 5.19. Shading
around a boxes indicates that the function is in a standard library.

in math library

main

fprintf scanf

exp
in stdio library

g

Figure 5.20. Function call graph with two levels of calls.
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First box: things that precede main() in a code module.
• When the C compiler reaches the #include command, it puts a copy of the tools.h file into this program.

This file contains prototypes for the functions in the tools library, including banner() and bye(), called
in this program.

• Included files often contain other #include commands. For example, the tools.h file contains #include
commands for the library header files, stdio.h, math.h, string.h, time.h, and ctype.h. If we include
tools.h in a program, we need not write separate include commands for these other library header files.

• This program uses two constants, representing the minimum and maximum values acceptable for input.
These constants are defined after the #include command and before the prototypes.

• We need a prototype for a function if a call on it comes before its definition in the file. Function f() is
called (second box) from main() and defined after main() (fourth box). Therefore, f() needs a prototype,
which is given on the fourth line of this box.

• The actual definition of function g() is given here, rather than a prototype. When a function definition
comes before any use of that function, no prototype is needed. This often is done when a function is so
simple that all its work is done in the return statement and so short that it can be written on one line.

Second and third boxes: Calls on the programmer-defined functions.
• We create f() and g() as two functions separate from main(), so that it is easy to change them when

we need to do some other calculation. A good modular design keeps the calculation portion of a program
separate from the user-interaction portion.

• In the second box, we set z equal to the result of calling function f() with the value of the variable x.
Function f() was only prototyped before main(), so when the compiler reaches this box, the full definition
of f() will not be known to it. However, the prototype for f() already was supplied, so the compiler
knows that a call on f() should have one double argument and return a double result. This information
is necessary to translate the call properly.

• In the third box, the function g() is called, and its return value is then passed directly to printf(). Since
g() already was fully defined, the compiler has full knowledge of g() when it reaches this line and, therefore,
is able to compile this call correctly.

• A sample output from this program, excluding the banner and closing comment, is

Enter a value of x between 10.50 and 87.00: 13.2

The value of x * exp(x) is: 7.13281e+06

The value of x * x + x is: 187.44

Fourth box: Definition of programmer’s function f().
• Here we define f(). The return type and parameter list in the function definition must agree with the

prototype given earlier.

• Function definitions should start with a blank line and a comment describing the action or purpose of
the function. Discipline yourself to do this. The dashed line provides a visual separation and helps the
programmer find the beginning of the function definition. This is extremely useful in a long program; make
it a habit in your work.

• Compare this definition to the previous one-line definition of g(). The definition of f() begins with a
descriptive header. The code itself is spread out vertically, with only one program element on each line,
according to the accepted guidelines for good style. The definition of g() is written compactly on one line;
that style is used only for very simple functions.

Inner box: A call on a library function.
• We call the function exp(), which is in the math library. We can do this because the header file, math.h,

was included by tools.h, which was included in this file.

• The variable y is a double. The prototype for exp() says that its parameter is a double. The type mismatch
here is not a problem. The compiler will note the mismatch and automatically compile code to convert the
double value to a double format during the calling process.
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This illustrates the function calls in Figure 5.19.

int main( void)

z = f( x );

return 
     y * exp( y );

double f (double)

double y

return

double x, z

printf( ..., g( x ) );

double g (double)

double exp(double)

return

???
double

return 
     y*y + y;

double y

return

Figure 5.21. A function is a black box.

5.5 Application: Numerical Integration by Summing Rectangles

We introduce the topic of integration with a simple integration program where the function to be integrated
is coded as part of the main program. The definite integral of a function can be interpreted as the area under
the graph of that function over the interval of integration on the x-axis. If a function is continuous, we can
approximate its integral by covering the area under the curve with a series of boxes and adding up the areas
of these boxes. Several methods for numerical integration are based on a version of this idea:

• Divide the interval of integration into a series of subintervals.

• For each subinterval, approximate the area under the curve in that interval by a shape such as a rectangle
or trapezoid whose area is easy to calculate.

• Calculate and add up the areas of all these shapes.

The simplest way to approximate the integral of a function is to use rectangles to approximate the area
under the curve in each subinterval; the diagram in Figure 5.22 and the program in Figure 5.23 illustrate this
approach. For each subinterval, we place a rectangle between the curve and the x-axis such that the upper-left
corner of the rectangle touches the curve and the bottom of the rectangle lies on the x-axis. In this example,
we calculate the integral of the function f(x):

f(x) = x2 + x, where 0 ≤ x ≤ b

by summing 100 rectangular areas, each of width h = b/100, as shown by Figure 5.22. For example, the area
of the rectangle between 2h and 3h is h× f(2h). Generalizing this formula, we get

Areak = h× f(k × h)

Now, summing over 100 rectangles, we get

Area =
99∑

k=0

h× f(k × h)

Notes on Figures 5.22 and 5.23: Integration by Rectangles.

First box: the function definition. This is the entire definition of the function we will integrate. Short
functions can be written on one line.
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b
=100h

. . .
. . .2h 4h 6h 8h 10h

x
0

y

h

f (x) = x2 + x

98h12h

Figure 5.22. The area under a curve.

Second box: declarations with initializations.
• In this initial example, we integrate a single fixed function over a fixed interval using a fixed number of

rectangles. Later, we present other integration programs that do the job in more general and more accurate
ways.

• We integrate the function over the interval 0 . . . 1.

• We divide this interval into 100 parts of length h = .01.

Third box: initializations for the loop.
• Although we could combine these initializations with the declarations, that is bad style. For trouble-free

development of complex programs, all loop initializations should be placed immediately before the loop.

• To prepare for the loop, we initialize the sum that will accumulate the areas.

• The loop variable for this while loop is k. The first rectangle lies between a and a+ 1× h, so we initialize
k to 0. Since a = 0.0, the first rectangle we sum starts at x = 0.0 + 0× h = 0.0.

Fourth box: the loop.
• We execute the loop from k = 0 until (but not when) k = 100. Therefore, we do it 100 times.

• The last rectangle summed starts at x = a+ 99h and goes to x = a+ 100h.

• We use the ++ operator to increment k each time around the loop.

• Note how convenient the += operator is for adding a new term to a sum.

Fifth box: the output.
• The exact area under this curve for the interval 0 . . . 1 is .833333. Since we are calculating an approximate

answer, it will be slightly different.

• The actual output is
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#include <stdio.h>

#define N 100

double f( double x ){ return x*x + x; }

int main( void )

{

double a = 0.0; // Lower limit of integration.

double b = 1.0; // Upper limit of integration.

double h = (b - a)/N; // Width of one of the N rectangles summed.

double x; // Current function argument; a <= x < b.

double sum; // Total area of rectangles.

int k; // Loop counter.

printf( " Integrate x*x + x from %g to %g. \n", a, b );

sum = 0.0;

k = 0;

while(k < N) { // Add up N rectangles.

x = a + k * h; // Lower left corner of kth rectangle.

sum += h * f( x ); // Area of rectangle at x.

++k;

}

printf( " The area is %g\n", sum );

return 0;

}

Figure 5.23. Integration by summing rectangles.

Integrate x*x + x from 0 to 1.
The area is 0.82335

5.6 Functions with More Than One Parameter

5.6.1 Function Syntax: Two Parameters

We have studied a variety of void and non-void functions having either no parameters or one parameter and
discussed the essentials of prototypes, parameters, and calls. Most functions, though, have more than one
parameter, so we need to study the few remaining facets of the syntax for defining and calling functions with
a more complex interface. The next few paragraphs summarize the syntax for functions with two parameters
and a return value. The forms for three or more parameters follow the same pattern, with additional clauses
added to the parameter list. We will use the following terminology in this discussion:

• f-name means any function name;

• p-type means the type of a parameter, vp-name means the name of a parameter,

• r-type means the type returned by the function,

• var means the name of a variable,

• exp means any expression of the correct type, possibly a simple variable name.
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Prototypes. The fundamental form for the 2-argument prototype is:

r-type f-name( p1-type p1-name, p2-type p2-name );

However, parameter names are optional in a prototype, so we could also write the prototype like this:

r-type f-name( p1-type, p2-type );

For example, suppose we have a function named cyl_vol that takes two double parameters. Its prototype
could be written in one of these two ways

double cyl_vol( double d, double h );
double cyl_vol( double, double );

In mathematical notation, this is called a double×double→double function.

Call syntax. A function call imitates the simpler form of the prototype; argument expressions of the appro-
priate type must be written, but parameter names are always omitted. The general syntax and a sample call
on cyl_vol are:

General syntax: var = f-name( exp1, exp2 );
Example: volume = cyl_vol ( diameter, height );

Definition syntax. A function definition imitates the longerform of the prototype; argument types and
names must both be given. This is the general syntax and function header of cyl_vol:

General syntax: r-type f-name( p1-type p1-name, p2-type p2-name ){...
Example: double cyl_vol ( double d, double h ){...

We illustrate these rules for the format of a two-parameter function using the program in Figures 5.24 and 5.25

Notes on Figures 5.24 and 5.25: Two parameters and a return value.

First box: the prototypes. We will use two double×double→double functions to calculate two properties
of a cylinder: volume and surface area. The prototype for the first, cyl_vol(), is written with the optional
parameter names and the prototype for the second function, cyl_surf() is written without. As always, either
prototype could be written either way.

Second box: the first function call and output.
• Since cyl_vol() returns a value, calls will be in the context of an assignment statement or in the argument

list of another function call. This call is part of an assignment.

• First, we call the function and save the answer in volume. Then, on the next line, we send the value of
volume to printf(). The calculation could be combined with the output and condensed into one statement
by putting the call on cyl_vol() directly into the argument list for printf(), thus:

printf( "\t The volume of this cylinder = %.2f \n",
cyl_vol( diam, height ) );

• It is a matter of personal style which way you write this code. The one-line version is more concise and
takes slightly less time and space. The two-line version, however, is easier to modify, works better with an
on-line debugger, and enhances seeing and understanding the technical calculation.

Third box: the second function call and output. The calculation and output can be combined and
condensed into one statement by putting the call directly into the argument list for printf(), as shown here.

Figure 5.25: definitions of cyl_vol and cyl_surf.
• Following modern guidelines for style, we prefer to write the return type, alone, on the first line of the

function definition. The second line starts with the function name on the left. Using this style makes it
somewhat easier to find the function names when you scan a long program and allows writing a comment
about the return value. Of course, these two lines also could be combined, thus:

double cyl_vol( double d, double h ) { ...
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This program illustrates the syntax for calling two-parameter non-void functions. The two functions called
here are defined in Figure 5.25.

// -------------------------------------------------------------------------

// Calculate the volume of a cylinder.

*/

#include <stdio.h>

#include <math.h>

#define PI 3.1415927

double cyl_vol( double d, double h ); // long form of prototype

double cyl_surf( double, double ); // short form of prototype

int main( void )

{

double diam, height; // Inputs: dimensions of the cylinder.

double volume; // Output: its volume.

printf( "\n Calculate the Volume of a Cylinder\n\n"

" Enter its diameter and height: " );

scanf( "%lg%lg", &diam, &height );

volume = cyl_vol( diam, height );

printf( "\t The volume of this cylinder = %g\n", volume );

printf ( "\t Its surface area = %g \tn", cyl_surf( diam, height ) );

return 0;

}

Figure 5.24. Using functions with two parameters and return values.

• The code in the body of this function uses only three variable names: d, h, and r. The first two are
parameters to the function, the third is defined at the top of the function’s block of code. All three objects
are local to the function; that is, these variables are defined by the function and only this function can
access them. Every properly designed function follows this pattern and confines its code to use only locally
defined names. All interaction between the function and outside variables happens through the parameter
list or the function’s return value.

Inner box: raising a number to a power. Very few functions in the math library require two arguments;
the most commonly used is the function pow(), which is used to raise a number to a power. In this box, we
are calculating the square of r, the radius.

This function’s prototype is double pow( double, double). The first argument is the number to be raised,
the second argument is the power to which to raise it. Both may be any double number. For example, pow(
100, .5 ) raises 100 to the power .5, which is the same as calculating its square root.

Output.

Calculate the Volume of a Cylinder

Enter its diameter and height: 2.0 10.0
The volume of this cylinder = 31.4159
Its surface area = 69.115

Cylinder has exited with status 0.
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We illustrate the syntax for definition of two-parameter non-void functions. These functions are called from
Figure 5.24.

// ---------------------------------------------------------------------

double // Calculate the volume of a cylinder

cyl_vol( double d, double h ) { // with diameter=d and height=h;

double r = d / 2; // r is the radius of the cylinder.

return PI * pow( r, 2 ) * h;

}

// ---------------------------------------------------------------------

double // Calculate surface area of cylinder

cyl_surf( double d, double h ) { // with diameter d and height h;

double area_end, area_side;

double r= d / 2; // r is the radius of the cylinder.

area_end = PI * pow( r, 2 ) // each end is a circle.

area_side = h * 2 * PI * r; // length of side = circle perimiter

return area_side + 2 * area_end; // surface is the side + 2 ends

}

Figure 5.25. Functions with two parameters and return values.

5.7 Application: Generating “Random” Numbers

5.7.1 Pseudo-Random Numbers

Many computer applications (experiments, games, simulations) require the computer to make some sort of
random choice. To serve this need, programs called pseudo-random number generators have been devised.
These start with some arbitrary initial value (or values), called the seed, and apply an algorithm to generate
another value that seems unrelated to the first. Then this first result will be used as the seed for the next value
and so on, as long as the user wishes to keep generating values.

The numbers generated by these algorithms are called pseudo-random numbers because they are not
really random but the output of an algorithm and an initial value. If the same algorithm is run again with
the same starting point, the same series of “random” numbers will be produced. The goal, therefore, is to find
an algorithm and a seed that will produce a long series of numbers with no detectable pattern and without
duplicating the seed. Repeating a seed would cause the series to enter a cycle.

The C function rand() generates pseudo-random integers, which might be 2 or 4 bytes long, depending on
the local definition of type int. (The actual range of values is 0 . . . RAND_MAX, which is commonly the same as
INT_MAX.) This function does not implement the best known algorithm but is good enough for many purposes.
The function is found in the standard library; to use it you must #include <stdlib.h>. Before calling rand()
the first time, you must call another function, srand() to supply an initial seed value. This seed could be
any integer value, such as a literal constant or a number entered by the user. However, in general, the user
should not be bothered with selecting a seed, and a constant seed is undesirable because it always will result
in the same pseudo-random series. (A constant seed can be useful during the debugging process so that error
conditions can be repeated.) What therefore is needed for most applications is a handy source of numbers that
are constantly changing and nonrepetitive. One such source is attached to most computers: the real-time clock.
Therefore, it is quite common to read the clock to get an initial random seed. This technique is illustrated in
Figure 5.26.
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5.7.2 How Good Is the Standard Random Number Generator?

The next program generates a large quantity of random integers and counts the occurrences of 0. According to
probability theory, if we generate numbers in the range 0 . . . n− 1, approximately 1/n of the values should be
counted. No single program run can confirm whether the generator is fair. However, repeated trials or larger
sample sizes will give some feeling for the quality of the random number generator being used. If the results
are close to the expected value most of the time, the generator is performing well; otherwise, its behavior is
questionable.

Notes on Figure 5.26. Generating random numbers.

First box: initializing the random number generator.

1. C provides a function in the time library that permits a program to read the system’s real-time clock (if
there is one). The return value of time() is an integer encoding of the time that has type time_t (an
integer of some system-dependent length defined in time.h).

2. The argument in the call to time() normally is the address of a variable where we want the time stored.
The function time() stores the current time into the given address in the same way that scanf() stores
an input value into a variable whose address is given to it.13 However, this function also returns the same
time value through the normal function return mechanism. Since we only need this information once,
we use a special constant value, NULL, as the argument; this is legal and tells the function that we don’t
want a second copy of the information stored anywhere in memory.

3. Our purpose here is not to know the actual time. Rather, we use the clock as a convenient source of a
seed for the random-number generator. A good seed is an unpredictable number that never is the same
twice, and the time of day suits this purpose very well.

4. The type cast operator, (unsigned), in front of the call on the time() function is used to convert the
time_t value returned by the time() function into the unsigned int form expected by srand(). Using
an explicit cast instead of the standard automatic coercion eliminates a compiler warning message on
some systems.

Second box: data input and validation. We eliminate divisors less than 2 because they are meaningless.
We also set an arbitrary upper limit on the range of numbers that will be generated. Since the limit is relatively
small, we can use a short integer to store it and there is space for printing many columns of numbers. Here is
an example of the error handling:

Please choose n between 2 and 100: 1
Number is out of range.

Error exit; press ’.’ and ’Enter’ to continue

A validation loop could be used here. We take the simpler approach of using fatal() because little effort has
been invested so far in running this program and little is wasted by restarting it after an error.

Large outer box: generating and testing the numbers. This loop calls rand() many times and collects
some information about the results. With the constant definitions given, we will generate 500 integers in the
range 0 . . . n − 1, where n <= 100. These numbers will be printed in 10 columns. Occurrences of 0 will be
counted.

First inner box: generating the numbers.

1. The function rand() returns a number between 0 and RAND_MAX. According to the standard, this number
may vary, but it is at least 32,767. We must scale this number to the desired range 0..n-1.

2. The modulus operator is exactly what we want for a scaling operation, since its result is between 0 and
the modulus −1. We compute num % select and store the result back in num.

13How this actually is done, using call by address, is discussed in Chapter 11.
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We generate a series of pseudo-random numbers and print them in neat columns. When finished, we
also print the number of zeros generated and the number expected, based on probability theory.

#include "mytools.h"

#define HOW_MANY 500 // Generate HOW_MANY random numbers

#define NCOL 10 // Number of columns in which to print the output.

#define MAX 100 // Upper limit on size of random numbers generated

int main( void )

{

long num; // a randomly generated integer

short select; // input: upper limit on range of random numbers

short n; // # of random numbers generated

int count; // # of zeros generated

banner();

srand( (unsigned) time( NULL ) );// seed random number generator.

printf( " Generate %i random numbers in the range 0..n-1. \n"

" Please choose n between 2 and %i: ", HOW_MANY, MAX );

scanf( "%hi", &select );

if (select < 2 || select > MAX) fatal( " Number is out of range." );

// Generate random numbers and test for zeros. ---------------------

count = 0; // Count zeros generated.

for (n = 0; n < HOW_MANY; ) { // Generate HOW_MANY random numbers.

num = rand(); // Generate a random long integer.

num %= select; // Scale to range 0..select-1.

++n; // Count the trials and...

printf( "%5li", num ); // ...print all numbers generated.

if (n % NCOL == 0) puts( "" ); // End line every NCOL outputs.

if (num == 0) ++count; // ..count the zeros.

}

if (count % NCOL != 0) printf( "\n" ); // End last line of output.

printf( "\n %5i zeros were generated.", count );

printf( "\n %7.1f are expected on average.\n", HOW_MANY/(double)select );

return 0;

}

Figure 5.26. Generating random numbers.
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Second inner box: lines of output.

1. The counter n keeps track of the total number of random numbers produced so far.

2. We want the output printed in columns, so we use a fixed field width in the conversion specifier: %7li.
Ten columns, each seven characters wide, will fit conveniently onto the usual 80-column line.

3. We want to print a ’\n’ after every group of NCOL numbers but not after every number. To do this, we
count the output items as they are produced and print a newline character every time the counter is an
even multiple of NCOL; that is, n % NCOL == 0.

Third inner box: counting the zeros. To assess the “fairness” of the random-number generator, we can
count the number of times a particular result shows up. If numbers in the range 0 . . . n−1 are being generated,
then each individual number should occur HOW_MANY / n times. In this program, we expect each number in
the possible range 1 . . . select−1 to occur approximately 500/select times. The following are the first and
last lines of output from three runs. Note that the number of zeros generated on two of three trials differs
substantially from the number expected. This is an indication that the rand() function does not produce a
very even distribution of numbers on our computer.

Generate 500 random numbers in the range 0..n-1.
Please choose n between 2 and 100: 25

7 19 24 8 18 20 8 10 4 5
5 18 14 19 5 11 24 17 11 5

...
2 0 5 21 22 3 21 7 23 18

18 zeros were generated.
20.0 are expected on average.

----------------------------------------------------
Please choose n between 2 and 100: 33

...
12 zeros were generated.
15.2 are expected on average.

----------------------------------------------------
Please choose n between 2 and 100: 33

...
20 zeros were generated.
15.2 are expected on average.

5.8 Application: A Guessing Game

In a classic game, one player thinks of a number and a second player is given a limited number of tries to guess
it. The first player must say whether the guess is too small, correct, or too large. We illustrated a simple
example of this game in Figure 6.31. Now, we implement the full game in the next program example, with the
computer taking the part of the first player.

5.8.1 Strategy

Even if a person has never seen this game, it does not take long to figure out an optimal strategy for the second
player:

• Keep track of the smallest and largest remaining possible value.

• On each trial, guess the number midway between them.

The computer’s response to each guess will eliminate half the remaining values, allowing the human player to
close relentlessly in on the hidden number.

Figure 5.27 illustrates a game in which the range is 1 . . . 1,000 and the hidden number is 458. The player
makes an optimal sequence of guesses, halving the range of remaining values each time: 500, 250, 375, 437,
468, 453, 461, 457, 459, 458. In this example, 10 guesses are required to home in on the hidden number. In
fact, with this strategy, this also is the maximum number of trials required to find any number in the given
range. Half the time the player will be lucky and it will take fewer guesses. The code for the program that
implements this game is given in Figures 5.28 (main()) and 5.29 (one_game(), which handles the sequence of
guesses).
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In this example, the total range of possible values is 1 . . . 1,000. The hidden number, num = 458, is
represented by a dashed line. The solid vertical lines represent the guesses of a player using an optimal
strategy; only the first five guesses are shown.

458

1 1000500250 375 437 468

15432

Figure 5.27. Halving the range.

5.8.2 Playing the Game

Choosing and scaling the number. We can call rand(), as was done in Figure 5.26, to get a number in
the range 0..INT_MAX. In this game, however, we require a random number between 1 and 1,000, so the number
returned by rand() must be scaled and adjusted to fall within the desired range. To do this, we use the %
(modulus) operator. For instance, rand() % TOP gives us a random number in the range (0..TOP-1). We then
adjust it to the desired range simply by adding 1. This formula is used in the first box of Figure 5.29.14

Setting a limit on the number of guesses. The strategy shown in Figure 5.27 is an example of an
important algorithm called binary search,15 because we search for a target value by dividing the remaining
set of values in half. If N values were possible in the beginning, the second player always could discover the
number in T trials or fewer, where N ≤ 2T . Another way to say this is that

T = dlog2Ne

where d. . .e means that we round to the next higher integer. Paraphrased, the maximum number of trials
required will be the base-2 logarithm of the number of possibilities, rounded up to the next larger integer. In
our case, this is

dlog2 1000e = d9.96578e = 10

To introduce an element of luck into the game, set the maximum number of guesses to something smaller than
T . This, in fact, is what we do in Figure 5.28; we round down instead of up, allowing too few guesses about
half of the time. This “stacks” the game in favor of the computer.

Calculating a base-2 logarithm. The C math library provides two logarithm functions: one calculates
the base-10 log, the other the natural log (base e). Neither of these is what we want, but you can use the
natural log function to compute the log of any other base, B, by the following formula:

logB(x) =
loge(x)

loge(B)

In C, the natural log function is named log(), so to calculate the base-2 log of 1,000, we write

log( 1000 ) / log( 2 )

This formula is used in the second box of Figure 5.28.

Notes on Figure 5.28. Can you guess my number?

14For reasons too complex to explain here, this formula has a slight bias toward lower numbers in the range. However, if the
range is small compared to RAND_MAX, the bias is insignificant.

15Other examples of binary search are given in Chapters 11 and 19.
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This main program calls the function in Figure 5.29. It repeats the game as many times as the player
wishes.

#include "mytools.h"

void one_game( int tries );

#define TOP 1000 // Top of guessing range.

int main( void )

{

int do_it_again; // repeat-or-stop switch

const int tries = log( TOP ) / log( 2 ); // One too few.

banner();

puts( "\n This is a guessing game.\n I will "

"think of a number and you must guess it.\n" );

srand( (unsigned)time( NULL ) ); // seed number generator.

do { one_game( tries );

printf( "\n\n Enter 1 to continue, 0 to quit: " );

scanf( "%i", &do_it_again );

} while (do_it_again != 0);

return 0;

}

Figure 5.28. Can you guess my number?

First box: guessing range.
In this game, the player will try to guess a number between 1 and TOP.

Second box: the number of trials.
• We calculate tries, the maximum number of trials the user is allowed. It is defined as a constant because

it depends only on TOP and does not change from one game to another. We use a const variable, rather
than #define, because the definition is not just a simple number.16

• The result of the division operation is a double value that is coerced to type int when stored in tries.

• C permits us to use a formula to define the value of a constant. Such formulas can use literal constants
(such as 2) and globally defined symbols (such as TOP). Inside a function definition, the parameter values
also can be used in a constant expression.

• We calculate the base-2 logarithm of the number of possible hidden values and use this to set the maximum
number of guesses. As described, we set this maximum so that the player will succeed about half the time.
The rest of the time, the player will be one guess short of success, even if he or she is using the optimal
search strategy.

Third box: initializing the random number generator. As in Figure 5.26, we initialize C’s random
number generator with the current time of day.

Notes on Figure 5.29. Guessing a number. The one_game() function is called from main() in Fig-
ure 5.28 for each round of the game that the player wishes to play.

16For reasons beyond the scope of this book, this is more efficient.
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This function is called from Figure 5.28. It plays the number-guessing game once.

void

one_game( int tries )

{

int k; // Loop counter.

int guess; // User’s input.

const int num = 1 + rand() % TOP; // The hidden value.

printf( " My number is between 1 and %i;"

" I will let you guess %i times.\n"

" Please enter a guess at each prompt.\n", TOP, tries );

for (k = 1; k <= tries; ++k) {

printf( "\n Try %i: ", k );

scanf( "%i", &guess );

if (guess == num) break;

if (guess > num) printf( " No, that is too high.\n" );

else printf( " No, that is too low.\n" );

}

if (guess == num) printf( " YES!! That is just right. You win! \n" );

else printf( " Too bad --- I win again!\n" );

}

Figure 5.29. Guessing a number.

First box: the hidden number. The first thing this function does is choose a hidden value. The value is
defined as a constant because it does not change from the beginning of a round to the end of that round. In this
case, the constant expression involves the value of a global constant. To calculate a random hidden number, we
use the random number generator rand(), scaling and adjusting its value to the required range, as discussed
earlier in this section.

Second outer box: playing the game. The code in this box is almost identical to the earlier version in
Figure 6.31. Correct guesses are handled by an if...break in the inner box. When the loop exits, the program
prints a failure message if the most recent guess was wrong.

Here is some sample output (omitting output of the query loop). The first two lines were printed by the
main program, the rest of the dialog was printed by the one_game() function. In this sample game, the player
was lucky and guessed the hidden number in only five tries. We expect this to happen only once in every 32
games.

This is a guessing game. I will think of a number and you must guess it.

My number is between 1 and 1000; I will let you guess 9 times.
Please enter a guess at each prompt.

Try 1: 500
No, that is too high.

Try 2: 250
No, that is too high.

Try 3: 125
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No, that is too high.

Try 4: 62
No, that is too low.

Try 5: 93
YES!! That is just right. You win!

5.9 What You Should Remember

5.9.1 Major Concepts

• Functions can be used to break up programs into modules of manageable complexity. In this way, a
highly complex job can be broken into short units that interact with each other in controlled ways. These
modules should have the following properties:

– The purpose of each function should be clear and simple.

– All its actions should hang together and work at the same level of detail.

– A function should be short enough to comprehend in its entirety.

– The length and complexity of a function can be minimized by calling other functions to do subtasks.

• Function definitions can come from the standard C libraries such as the stdio and math libraries or from
a personal library. Functions also can be defined by the programmer.

• Some functions compute and return values; others do not. A function with no return value is called a
void function. Such functions normally perform input or output of some sort. This chapter presented
programmer-defined functions with zero, one, and two parameters (void→void, double→double, and
double×double→double respectively). Additional types of library functions and programmer-defined
functions are introduced in subsequent chapters as additional data types are discussed.

• A call to a function that returns a value normally is found in an assignment statement, an expression, or
an output statement.

• The basic components of a function are the prototype and the function definition, which consists of a
header and a body.

• Arguments are the means by which a calling program communicates data to a function. Parameters are
the means by which a function receives the communicated data. When a function is called, the actual
arguments in the function call are passed into the function and become the values of the function’s formal
parameters.

• After passing the parameter values, control is passed into the function. Computation starts at the top
and proceeds through the function until it is finished, at which time the result is returned and control is
transferred back to the calling program. A more detailed look at functions will be given in Chapter 9.

• The name of the parameter in a function does not need to be the same as the name of a variable used in
calling that function.

• Functions allow an application program to be constructed and verified much more easily than a similar
program written as one massive unit. Each function, then each module, is developed and debugged
before it is inserted into the final, large program. This is how professional programmers have been able
to develop the large, sophisticated systems that we use today.

• Here is a (questionable) rhyme to help you remember the four ways to extract an integer from a double
value:

ceil() goes up and floor() goes down; rint() goes nearby but assign doesn’t round.

• Random numbers. Applications such as games, experiments, and quiz programs require a program to
make a series of randomized selections from a preset list of numbered options. To do this, we use an
algorithm called a pseudo-random number generator, which generates a series of integers with no apparent
pattern. The random number then is scaled to be in the proper range if it does not fall within the range
of selection numbers.
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The standard library provides the functions srand() and rand(), which together implement a pseudo-
random number generator.

5.9.2 Local Libraries and Header Files

At various places in this chapter, suggestions were made about building a personal library called “mytools”.
In this section, we gather together the various parts that could be included in that library and show how they
would be organized into a header file mytools.h and a code file mytools.c, and how a client program would
use such a library.

The header file for mytools.
// --------------------------------------------------------------------------
// Alice Fischer’s personal tools library. File: mytools.h
// Last updated on July 29, 2011.
// Standard library headers that I need. ---------------------------------
#include <stdio.h> // for puts(), printf(), and scanf()
#include <stdlib.h> // for exit()
#include <time.h> // for time_t, time() and ctime()
#include <stdbool.h> // for bool data type; c99 standard

// defined on some systems but not on mine.
#define PI 3.1415926535897932384626433832795l

// Prototypes for my own tool functions. ---------------------------------
void banner( void ); // Print a neat header for the output.

The code file for mytools.
// --------------------------------------------------------------------------
// Alice Fischer’s personal tools library. File: mytools.c
// Last updated on Tue Sep 16 2003.

#include "mytools.h"
// -----------------------------------------------------------------------
void banner( void ) // Print a neat header for the output.
{

time_t now = time(NULL);
printf( "\n-------------------------------------------------------\n" );
printf( " Alice E. Fischer\n CS 110\n ");
printf( ctime( &now ) );
printf( "-------------------------------------------------------\n" );

}

A program that uses mytools.
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// ----------------------------------------------------------------------
// Demo program for using a personal library. Both files mytools.h and
// mytools.c must be added to the project for this program.
// ----------------------------------------------------------------------

#include "mytools.h"
int main( void )
{

int count; // Number of people in the room.
banner();
printf( " Demonstrating the use of a personal library.\n"

" How many people are watching? " );
scanf( "%i", &count );
if (count < 2) puts( " Not enough.\n" );
else puts( " Hello you-all!\n" );
return EXIT_SUCCESS;

}

Sample output from this demo.

-------------------------------------------------------
Alice E. Fischer
CS 110
Tue Sep 16 12:26:45 2003

-------------------------------------------------------
Demonstrating the use of a personal library.
How many people are watching? 3
Hello you-all!

5.9.3 The Order of the Parts of a Program

The following diagram summarizes the order in which it is customary to write prototypes, function definitions,
and other elements in a source code file. The prototypes are normally written first, followed by the main()
function then all other functions, in any convenient order.
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/* -----------------------------------------------------------------
//  Figure 5.15:  PROGRAMMER-DEFINED FUNCTIONS 
*/
#include <stdio.h>        /* For printf() and scanf() */
#include <stdlib.h>       /* For exit */
#include <math.h>         /* For sqrt() and pow() */
#define GRAVITY 9.81

void title( void );
double drop( double height );   

int main( void )                                             
{ 
    double h;       /* height of fall (m) */      
    double t;       /* time of fall (s) */            
    double v;       /* terminal velocity (m/s) */
     
    title();    
    printf( " Enter height of helicopter (meters):  " );           
    scanf( "%lg", &h );     /* keyboard input for height */
    t = drop( h );          /* Call drop.  Send it the argument h. */
    v = GRAVITY * t;        /* velocity of grapefruit at this time */   

    printf( "    Time of fall = %g seconds\n", t );        
    printf( "    Velocity of the object = %g m/s\n", v ); 
    return 0;                                                 
} 
/* --------------------------------------------------------------- */ 
void title( void ) {                                                                           
    printf(" Grapefruits and Gravity with a Drop Function\n\n" ); 
} 

/* --------------------------------------------------------------- */  
/* Time taken for object dropped from height meters to hit ground. */  
double drop ( double height ) 
{   
    double time; 
    if (height < 0)   {            /* Exit gracefully after error. */  
        printf( " Height must be >= 0; you entered  %g\n", height ); 
        exit( 1 );                        /* Abort execution */
    } 
    time = sqrt( 2 * height / GRAVITY );  /* Calculate time of fall*/ 
    return time;
}  

identifying comments

main's local declarations

preprocessor commands

function calls

function definition: title

function definition: main

function prototypes

function definition: drop

drop's local declaration

return statement

function calls

return statement

5.9.4 Programming Style

• Keep the main program and all function definitions short. An entire function should fit on one video
screen, so that the programmer can see the declarations and the code at the same time. When a function
begins to get long, this often is a sign that it should be broken into two or more functions.

• Every function definition should start with a distinctive and highly visible comment. We use a dashed
line followed by a brief description of the purpose of the function. This comment block helps you to find
each portion of your program quickly and easily, both on screen and on paper.

• Function names should be descriptive, distinctive, and not overly long.

• All the object names used in a function should be either parameter names or defined locally as variables.
This provides maximum isolation of each function from all others, which substantially aids debugging.

5.9.5 Sticky Points and Common Errors

• The prototype must match the function header. If there is a mismatch, the program will not compile
correctly.

• Prototypes end in semicolons. If the semicolon is missing, the compiler “thinks” that the prototype is
the function header. This will cause many meaningless error comments.
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• Definitions must not have a semicolon after the function header. If a semicolon is written there, the
compiler “thinks” the header is a prototype and will give an error comment on the next line.

• If the prototype is missing or comes after the first function call, the compiler will construct a prototype
using the types of the parameters given in the first function call. The return type always will be int,
which may or may not be correct. If the constructed prototype is wrong, it will cause the compiler to
give error comments on lines that are correct.

5.9.6 Where to Find More Information

• Chapter 9 presents the full process of top-down programming and stub testing. This discussion has been
deferred until the basic mechanics of functions and function calls are better understood.

• Chapter 9 has a more complete discussion of functions and prototypes.

• Chapter 9 explains local and non-local variables and how they are implemented using activation records
on the run-time stack. Figure 9.2 shows how storage might be managed at run time for the cylinder
program in Figure 5.24.

• Functions and type definitions to help programmers use the clock are described in Appendix F and parts
are discussed in detail in Chapter 12.

• Chapter 12 shows a revised version of the banner() function.

• The website for this chapter introduces a function named fatal() that combines the actions of printf()
and exit(), allowing error handling to be done in one statement.

• The results of a subprogram must be passed back to the caller. Depending on the function’s purpose,
there may be no, one, or more results. but only one result can be returned through a return statement.
There are several ways around this difficulty:

– Chapter 10 discusses array parameters, which can be sent, empty, into a function, then filled in the
function and returned containing a potentially large amount of data.

– Chapter 11 shows how pointer arguments may be used to return information from a function to the
caller.

– Chapter 13 discusses compound objects (structures) that can contain and return many pieces of
information packed into a single object.

5.9.7 New and Revisited Vocabulary

These are the most important terms and concepts that were introduced or discussed in this chapter:

function function comment block call graph
standard library function body pseudo-random numbers
personal library function return seed
header file programmer-defined function binary search
function call prototype declaration constant expression
caller function definition void→int function
argument function interface void→void function
subprogram function header int→void function
transfer of control parameter double→double function
interrupted flow local variable double×double→double function
exception

The following C keywords, header files, library functions, constants, and types were discussed in this chapter:
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return statement
<stdio.h>

scanf() (from stdio)
printf() (from stdio)
puts() (from stdio)
<limits.h>

INT_MAX (from limits.h)
RAND_MAX (from stdlib.h

<stdlib.h>

EXIT_FAILURE (from stdlib.h)
EXIT_SUCCESS (from stdlib.h)
exit() (from stdlib)
abs() (from stdlib)
srand()(from stdlib)
rand()(from stdlib)
<time.h>

time_t (from time.h)
time(NULL) (from time.h)
ctime() (from time.h)
<math.h>

sqrt() (from math)
floor() (from math)
log() (from math)
pow() (from math)

5.10 Exercises

5.10.1 Self-Test Exercises

1. For each part, write a double→double function that computes the formula and returns the result:

(a) Tangent of angle x =
sin(x)

cos(x)

(b) Surface area of a sphere with radius r = 4× π × r2

2. For each part, write a double×double→double function that computes the formula and returns the result:

(a) Hypotenuse of a right triangle: length =
√

base2 + height2

(b) Polar to rectangular coordinates: y = r × cos(theta)

(c) Rectangular to polar coordinates: theta = arc tangent(y/x) for x 6= 0

3. Write the prototype that corresponds to each function definition:

(a) double cube( double x ) { return x*x*x; }

(b) void three_beeps() { beep(); beep(); beep(); }

(c) int surprise( void ) { return 17; }

(d) int ratio( double a, double b) { return a/b; }

4. Explain the difference between

(a) An argument and a parameter

(b) A prototype and a function header

(c) A header file and a source code file

(d) A personal library and a standard library

(e) A function declaration and a function call

(f) A function declaration and a function definition

5. What happens on your compiler when a prototype for a programmer-defined function is omitted? To find
out, start with the code from Figures 5.15 and 5.18 and delete the prototype above the main program.

6. Prototypes and calls. Given the prototypes and declarations that follow, fix the errors in each of the
lettered function calls.

void squawk( void );
int half( int );
double area( double, double);

int j, k;
double x, y, z;

(a) k = squawk();

(b) squawk( 3 );

(c) j = half( 5, k );
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(d) j = half( int k );

(e) y = area( double 3.0, x );

7. Find the error here. Using the declarations given in problem 6, find the one function call below that has
an error and explain what the error is. (The other three are correct.)

(a) y = area( x+2, 3 );

(b) y = half( half( k ) );

(c) printf( "%g %g", x, half( x ) );

(d) y = area( sin( x ), z );

5.10.2 Using Pencil and Paper

1. List everything you must write in your program when you want to use (not define) each of the following:

(a) A programmer-defined void→void function named help()

(b) The fatal() function

(c) The sqrt() function

2. Write a prototype that could correspond to each function call below:

(a) do_it();

(b) x = calculate( y, z);

(c) k = get_Integer();

(d) x = cubeRoot( y );

3. For each part, write a double→double function that computes the formula and returns the result:

(a) Sine: sin(x) =
√

1− cos2(x)

(b) Tangent: tan(2x) =
2 tan(x)

1− tan2(x)

(c) Diagonal of a square with side s =
√

2× s2

(d) Volume of a sphere with radius r =
4π

3
× r3

4. Write a double×double→double function that computes the formula and returns the result:

Sum of angles: sin(x+ y) = sin(x) cos(y) + cos(x) sin(y)

5. What happens on your compiler when a required #include command is omitted? Will a program compile?
Will it work correctly?

6. Prototypes and calls. Given the prototypes and declarations that follow, say whether each of the lettered
function calls is legal and makes sense. If the call has an error, fix it.

void squawk( void );
int half( int );
double area( double, double);

int j, k;
double x, y, z;

(a) j = squawk();

(b) half( k );

(c) j = half( 5 * k );

(d) y = area( double 3.0, double x );

(e) y = area( z );

(f) y = area( pow( x, 2 ), z );
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(g) scanf( "%i %i", &k, &half( k ) );

(h) y = area( x, y, z );

7. Write the prototype that corresponds to each function definition. Then define appropriate variables and
write a legal call on the function.

(a) double inches( double cm ) { return cm / 2.54; }

(b) void beeps( int n )
{ int k = 0;

while (k < n) {
beep();
++k;

}
}

5.10.3 Using the Computer

1. Geometric mean.

A geometric progression is a series such as 1, 2, 4, 8, . . . or 1, 5, 25, 125, . . . such that each number in the
series is multiplied by a constant to get the next number. More formally, the constant, R, is called the
common ratio. If the first term in the series is a, then succeeding terms will be a ∗R, a ∗R2, a ∗R3, . . .
For instance, if a = 1 and R = 2, we get 1, 2, 4, 8, . . . and if a = 1 and R = 5, we get 1, 5, 25, 125, . . .

Given terms k − 1 and k + 1 in a geometric progression, write a main program and at least one function
to compute term k and the common ratio, R. Term k is called the geometric mean between the other
two terms. The formulas for the kth term and common ratio are

R =

√
tk+1

tk−1
and tk = R× tk−1

2. Integration using trapezoids.

b
=100h

. . .
. . .2h 4h 6h 8h 10h

x
0

y

h

f (x) = x2 + x

98h12h

left right

area = h * (left + right) / 2

Modify the program in figure 5.23 to use trapezoids, rather than rectangles, to approximate the area
under the curve, according to this sketch of the trapezoid method: Compare your answers to those from
Figure 5.23. What can you say about their accuracy?
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3. Numerical integration.

The program in Figure 5.23 integrates the function f(x) = x2 + x for 0 ≤ x ≤ 1.0. Modify this program
to integrate the function f(x) = x2 +2x+2 for −1.0 ≤ x ≤ 1.0. If you have studied symbolic integration,
compare your result to the exact analytical answer.

4. Precision of numerical computations.

Figure 5.23 gives a program that integrates a function by rectangles. Keep the function f() and modify
the main program so that the integration process will be repeated using 10, 20, 40, 80, 160, and 320
rectangles. Print a neat table of the number of rectangles used and the results computed each time.
Compare the answers. What can you say about their accuracy?

5. Sales tax.

Write a double→double function whose parameter is a purchase price. Calculate and return T , the total
price, including sales tax. Define the sales tax rate as a const R whose value is 6%. Write a main program
that will read P , the before-tax amount of a purchase, call your function to calculate the after-tax price,
and print out the answer. Both prices will be in units of dollars and cents. What are the appropriate
types for P , R, and T? Why? Use the program in Figure 5.15 as a guide.

6. Fence me in.
A farmer has several rectangular fields to fence. The fences will be made of three strands of barbed
wire, with fence posts no more than 6 feet apart and a stronger post on every corner. Write a complete
specification, with diagram, for a program that will input the length and width of a field, in feet. Make
sure that each input is within a meaningful range. If so, calculate the area of the field and the total
length of barbed wire required to go around the field. Also calculate the number of fence posts needed
(use the ceil() function from the math library). Now write a program that will perform the calculations
and display the results.

7. A spherical study.

Write four functions to compute the following properties of a sphere, given a diameter, d, which is greater
than or equal to 0.0:

(a) Radius r = d/2

(b) Surface area = 4× π × r2

(c) Circumference = πd

(d) Volume =
4π

3
× r3

Write a main program that will input the diameter of a sphere, call all four functions, and print out the
four results. Do not accept inputs less than 0.0.

8. Take-home pay.

Write a double→double function whose parameter is an employee’s gross pay for one month. Compute
and return the take-home pay, given the following constants:

• Medical plan deduction = $75.65

• Social security tax rate = 7.51%

• Federal income tax rate = 16.5%

• State income tax rate = 4.5%

• United Fund deduction = $15.00

The medical deduction must be subtracted from the gross pay before the tax amounts are computed.
Then the taxes should be computed and subtracted from the gross. As each one is computed, print the
amount. Finally, subtract the United Fund contribution and return the remaining amount. Your main
program should print the final pay amount.

9. Hourly Employee.

Write a double×double→double function whose parameters are an employee’s hourly pay rate and number
of hours worked per week. Compute and return the gross pay.

Your main program should call the hourly-pay function, then use its result to call the take-home pay
function described in the previous problem. Print the take-home pay, as before.
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10. Compound interest.

(a) Write a function with three double parameters to compute the amount of money, A, that you will
have in n years if you invest P dollars now at annual interest rate i. The formula is

A = P (1 + i)n

(b) Write a main program that will permit the user to enter P , i, and n. Call your function to compute
A. Your main program should echo the inputs and print the final dollar amount.

11. Probability.

A statistician needs to evaluate the probability, p, of the value x occurring in a sample set with a known
normal distribution. The mean of the distribution is µ = 10.71 and the standard deviation is σ = 1.14.

(a) Write a double→double function with parameter x that computes the value of the probability
formula for a normal distribution, which follows. To compute ex, use the exp() function from the
math library; its prototype is double exp( double x ).

p =
1

σ ×
√

2π
× e−d, where d =

[(x− µ)/σ]2

2

(b) Write a main program to input the value for x, call your probability function, and print the results.
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Chapter 6

More Repetition and Decisions

This chapter continues the discussion of control statements, which are used to alter the normal top-to-bottom
execution of the statements in a program. As each new kind of statement is covered, its corresponding flow
diagram will be shown. We present the syntax, flowcharts, and examples of use for these statements.

There are three kinds of loop statements in C, each of which is used to repeat a block of code. The while
loop was introduced in Chapter 3. This chapter presents two additional loop statements, for and do...while.
We also discuss various ways that loops can be used.

Conditional control statements are used to determine whether to execute or skip certain blocks of code.
The C language has three kinds of conditional control statements: the if...else statement and the simple
if statement without an else clause, which are introduced in Chapter 3, and a multibranched conditional
statement, the switch statement. In this chapter we examine the switch statement and a new way to use the
simple if statement.

We briefly cover the break and continue statements, which interrupt the normal flow of control by transfer-
ring control from inside a block of code to its end or its beginning. C also supports the goto control statement.
However, we neither explain it nor illustrate its use, because it is almost never needed in C and its unrestricted
nature makes it error prone. Using a goto statement is considered very poor programming practice because it
leads to programs that are hard to both debug and maintain.

6.1 New Loops

6.1.1 The for Loop

The for loop in C implements the same control pattern as the while loop; anything that can be done by a
while loop can be done in the same way using a for loop and vice versa. A for loop could be thought of as
a shorter, integrated notation for a while loop that brings together the initialization(s), the loop test, and the
update step in a single header at the top of the loop, as shown in Figure 6.1.

Thus, for is not really a necessary part of the language. However, it probably is more widely used than
either of the other loops because it is very convenient and it captures the nature of a loop that is controlled by
a counter. After gaining some experience, most programmers prefer using the for statement for many kinds
of loops, especially for counted loops like that in Figure 6.1. An extremely simple program containing a for
loop is shown, with its output, in Figure 6.2. This illustrates how a loop should be laid out in the context of a
program.

The syntax and flow diagram for for. The for statement has a header consisting of the keyword for,
followed by a parenthesized list of three expressions separated by semicolons: an initialization expression, a
condition, and an update expression. All three expressions can be arbitrarily complicated. Usually, however,
the first part is a single assignment, the second is a comparison, and the third is an increment expression, as
shown in in Figure 6.1.

Since for and while implement very similar control structures, a for loop can be diagrammed in the same
manner as a while loop: using separate boxes for the initialization, test, and update steps. However, there is

155
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In this simple while statement and its corresponding for statement, k is used as a counter to keep track of
the number of loop repetitions. When k reaches 10, the body will have been executed 10 times and the loop
will exit. Following the loop, the values of k and sum will be printed. The output will be 10 45.

next  statement:

sum = k = 0; 
while (k < 10) {
    sum += k; 
    ++k; 
}
printf( "%i  %i\n", k, sum );

initializations:

body
while  
statement:

condition.......................................
.

update.......................
......

for (sum = k = 0; k < 10; ++k) {
    sum += k; 
}
printf( "%i  %i\n", k, sum );next  statement:

initializations; condition; update:
body:

for  
statement:

Figure 6.1. The for statement is a shorthand form of a while statement.

a more compact, single-box diagram that combines these pieces into one multipart control box with a section
for each part of the loop header. (See Figure 6.3). Control enters through the initialization section at the top,
then goes through the upper diagonal line into the condition section on the right. If the condition is true,
control leaves through the lower exit, going through the boxes in the body of the loop, coming back into the
update section of the for box, and finally, going through the lower diagonal line into the test again. If the test
is false, control leaves the loop through the upper exit. The flow diagrams in Figure 6.4 compare the equivalent
while and for loops of Figure 6.1. Both the statement syntax and the diagram for the for loop are more
concise—fewer parts are needed and those parts are more tightly organized—than in a corresponding while
loop.

Declaring the for-loop variable. If the loop variable will be used only within the loop, it is customary
to declare it in the parentheses that follow the keyword for, as shown in Figure 6.2. This style keeps the
declaration near the use of the variable and is consistent with modern usage in Java and C++.

Initializing the loop variable. An initialization statement must be written before a while loop so that
the loop variable has some meaningful value before the loop test is performed the first time. In a for loop,
this initialization is written as the first expression in the loop header. When the for loop is executed, this
expression will be evaluated only once, before the loop begins.

// ---------------------------------

// Counting with a for loop.

#include <stdio.h>

int main( void )

{

for (int k = 0; k < 5; ++k) {

printf( " %i \n", k );

}

puts( "-----\n" );

}

The output is

0

1

2

3

4

-----

Figure 6.2. A simple program with a for statement.
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The general form of a for flow diagram is shown here. Control passes through the loop in the order indicated
by the arrows. Note that this order is not the same as the order in which the parts of the loop are written
in the code.

      next 
  statement

initialization false

condition
update

body

true

end of loop body

Figure 6.3. A flow diagram for the for statement.

The , (comma operator) can be used in a for loop to permit more than one item to be initialized or
updated. For example, the loop in Figure 6.1 could be written with separate initializations for sum and k:

for (sum = 0, k = 0; k < 10; ++k) ...

Technically, both assignment and comma are operators. They build expressions, not complete statements, so
we are permitted to use either or both any time the language syntax calls for an expression.

The loop test and exit. The condition in a for statement obeys the same rules and has the same semantics
as that of a while condition. It is executed after the initializations, when the loop is first entered. On subsequent
trips through the loop, it is executed after the update. If the condition does computations or causes side effects,
such as input or output, those effects will happen each time around the loop. (This programming style is not
recommended. It may be concise, but it sacrifices clarity and does not work well with some on-line debuggers.)
Finally, note that the body of the loop will not be executed at all if the condition is false the first time it is
tested.

The flow diagram for the while loop in Figure 6.1 is shown on the left and the diagram for the for loop is
on the right. Note that the parts of the two loops are executed in exactly the same order, as control flows
into, through, and out of the boxes along the paths indicated by the arrows.

sum=k=0; false

k<10;

++k

sum += k;

true

print  k, sum

  print k, sum

sum += k;
++k;

while

sum=k=0;

k<10
falsetrue

Figure 6.4. Diagrams of corresponding while and for loops.
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The general form of a do...while flow diagram is shown on the left. Control passes through the loop body
before reaching the test at the end of the loop. On the right is a diagram of a summing loop, equivalent to
the loops in Figure 6.4 that use while and for statements.

update
& body 

falseconditiontrue

while

do

 initialization

next 
statement print k, sum

sum += k;
++k;

do

sum=k=0;

k<10 falsetrue

while

Output: 10  45  

Figure 6.5. A flow diagram for the do...while statement.

Updating the loop variable. The update expression is evaluated every time around the loop, after the
loop body and before re-evaluating the loop condition. Note the mismatch between where the update is written
on the page and when it happens. It is written after the condition and before the body, but it happens after
the body and before the condition. Beginning programmers sometimes are confused by this inverted order. Let
the flow diagram be your guide to the proper order of evaluation.

In a counted for loop with loop variable k, the update expression often is as simple as k++ or ++k. A lot of
confusion surrounds the question of which of these is correct and why. The answer is straightforward: As long
as the update section is just a simple increment or decrement expression, it does not matter whether you use
the prefix or postfix form of the operation. Whichever way it is written, the loop variable will be increased (or
decreased) by 1 after the loop body and before the condition is retested.

The loop body. The loop body is executed after the condition and before the update expression. In
Figure 6.1, compare the for loop body, which contains only one statement, with the two-statement body of the
while loop. The update expression must be in the body of a while loop but becomes part of the loop header
of a for loop, shortening the body of the loop by at least one statement. Often, this reduces the body of a for
loop to a single statement, which permits us to write the entire loop on one line, without braces, like this:

for (sum = 0, k = 0; k < 10; ++k) sum += k;

6.1.2 The do...while Loop

The do...while loop implements a different control pattern than the while and for loops. The body of a
do...while loop is executed at least once; this is illustrated by the flow diagram in Figure 6.5. The condition,
written after the keyword while, is tested after executing the loop body. Therefore, unlike the while and for
loops, the body of a do...while loop can initialize the variables used in the test. This makes the do...while
loop useful for repeating a process, as shown in Figure 6.12.

6.1.3 Other Control Statements

C supports four statements whose purpose is to transfer control to another part of the program. Two of these,
break and continue, are used in conjunction with loops to create additional structured control patterns. The
third, return, is used at the end of a function definition. The fourth, goto, has little or no place in modern
programming and should not be used. Neither break nor continue is necessary in C; any program can be
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A break statement takes control directly out of a while or do loop.
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condition
while

statements

more statements condition

if
truefalse

break
      next 
 statement

do

false
condition
if

       next 
  statement

falsetrue while 
condition

statements

more statements

true
break

Figure 6.6. Using break with while and do.

written without them. However, when used skillfully, a break or continue statement can simplify program
logic and shorten the code. This is highly desirable because decreasing complexity decreases errors.

The break statement. The break statement interrupts the normal flow of control by transferring control
from inside a loop or a switch1 to the statement after its end. If the break is within a for,do... while, or
while loop, execution continues with the first statement following the body of the loop.

The break statement is diagrammed as an arrow because it interrupts the normal flow of control. An if
statement whose true clause is a break statement is commonly used inside a while loop or a for loop. We will
call this combination an if...break statement; it is diagrammed as an arrow that leaves the normal control
path at an if statement inside the loop and rejoins the normal path at the statement after the loop. (See
Figure 6.6.)

In a for loop, a break statement also takes control to the first statement after the body of the loop. This
is discussed further in Section 6.2.7.

1Section 6.3 deals with the switch statement.

A continue statement takes control directly to the top of at while or do loop.
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Figure 6.7. Using continue with while and do.
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A continue statement takes control to the increment step in the header of a for loop.

       next 
  statement

more statements

initialization false

condition
update

true

statements

condition

for

if
truefalse

break

Figure 6.8. Using continue with for.

The continue statement. The continue statement interrupts the normal flow of control by transferring
control from inside a loop to its beginning. If it is within a for loop, execution continues with the increment
step, as shown on the right in Figure 6.7. In a while or do...while loop, execution continues with the loop
test. The continue statement is also diagrammed as an arrow. An if...continue statement is diagrammed
as an arrow that leaves the normal control path at the if statement and rejoins the loop at the top.

The for loop works like a while loop. Figure 6.8 shows that control returns to the “update” portion of
the control unit.

The continue statement is not commonly used but occasionally can be helpful in simplifying the logic
when one control structure is nested within another, as when a loop contains a switch statement. This control
pattern is used in menu processing and will be illustrated in Chapter 12 where continue is used within the
switch to handle an invalid menu selection.

The return statement. By now, the return statement should be familiar to the reader; it has been used in
every program example since Chapter 2. Here, we restate the rules for using return, and discuss a few usage
options.

1. Executing a return statement causes control to leave a function immediately.

2. A void function may contain a simple return statement, in which the keyword return is followed im-
mediately by a semicolon. If this statement is omitted, the function will return when control reaches the
final closing brace.

3. Every non-void function must contain a return statement with an expression between the keyword return
and the semicolon. The type of this expression must match the declared return type or be coercible to
that type2. When control reaches this statement, the expression will be evaluated and its value will be
returned.

4. It is syntactically legal to have more than one return statement in a function. However, this is generally
considered to be poor style. There is genuine debate, however, about whether multiple returns are
sometimes appropriate. On one side, many teachers and employers prohibit this practice because it
breaks the “one way in – one way out” design rule. On the other side, some experts believe that code
simplicity is more important than “one in – one out” construction, and permit use of multiple return
statements in a few situations where the extra return statements significantly shorten or reduce the
nesting level of the code.

6.1.4 Defective Loops

If a loop does not update its loop variable, it will loop forever and be called an infinite loop. The most
common cause of an infinite loop is that the programmer simply forgets to write a statement that updates the

2Type coercion is discussed in Chapter 7.
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int sum = 0, k = 0; 
while (k < 10) 
   sum += k; 
   ++k; 
printf( "%i %i\n",k,sum );

next  statement.....................

int sum = 0, k = 0; 
while (k < 10);
{ sum += k; 
  ++k; 
}
printf( "%i %i\n",k,sum );

(initializations).....
....................

prior code <
<

> ..........

while  statement

> ..........
 ..........

Figure 6.9. No update and no exit: Two defective loops.

loop variable. Another source of error is missing or misplaced punctuation. The body of a loop starts at the
right parenthesis that ends the condition. If the next character is a left curly bracket, the loop extends to the
matching right curly bracket. Otherwise, the body consists of the single statement that follows the condition
and the loop ends at the first semicolon. Figure 6.9 shows two loops that are infinite in nature because they
do not update their loop variable. The loop on the left is like the while loop in Figure 6.1 except that the
braces are missing. Because of this, the loop ends after the statement sum += k; and does not include the ++k
statement. This kind of omission will not be caught by the compiler; it is perfectly legal to write a loop with
no braces and with only one statement in its body. The compiler does not check that the programmer has
updated the loop variable.3

The loop on the right has an extraneous semicolon following the loop condition. This semicolon ends the
loop, resulting in a null or empty loop body, which is legal in C. Since k, the loop variable, is not updated before
this semicolon, it never changes. (The bracketed series of statements that follows the semicolon is outside the
loop.) One way to avoid this kind of error is to write the left curly bracket that begins the loop body on
the same line as the keyword while. The left bracket is a visible reminder that the line should not end in a
semicolon.

6.2 Applications of Loops

Knowing the correct syntax for writing a loop is important but only part of what a programmer needs to
understand. This chapter and later ones present several common applications of loops and paradigms for their
implementation in C. These applications include

Sentinel loops. Introduced in Figure 6.24 and discussed in Section 6.2.1.

Query loops. Presented in Section 6.2.2.

Counted loops. Introduced in Figure 3.14 and treated in greater depth in Section 6.2.3.

Input validation loops. Introduced in Figure 3.15 and revisited in Section 6.2.4.

Nested loops. : Presented in Section 6.2.5.

Delay loops. Presented in Section 6.2.6.

Flexible-exit loops. Presented in Section 6.2.7.

Counted sentinel loops. Based on the flexible-exit loop, this pattern is presented in Section 6.2.8.

Search loops. Introduced in Section 6.2.9 and illustrated in several later chapters.

Table processing loops are introduced in Chapter 13.

3A mathematical technique, called a loop invariant , can be used to find loops that do not accomplish the design goals. This
technique is beyond the scope of an introductory textbook.
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End-of-file loops are introduced in Chapter 14.

6.2.1 Sentinel Loops

A sentinel loop keeps reading, inspecting, and processing data values until it comes across a predefined value
that the programmer has designated to mean “end of data.” Looping stops when the program recognizes this
value, which is called a sentinel value, because it stands guard at the end of the data.

The value used as a sentinel depends on the application; to choose an appropriate sentinel value, the
programmer must understand the nature of the data. Most functions that process strings use the null character
as a sentinel value. Loops that read and process input data often use the newline character as a sentinel. If the
data values are integers and a program processes only nonzero data values, then 0 can be used as a sentinel. If
all data values are nonnegative, then −1 can be used as the sentinel. If every integer is admissible, the value
INT_MAX (the largest representable integer) often is used as a sentinel.

In all cases, a sentinel value must be of the same data type as the ordinary data values being processed,
because it must be stored in the same type of variable or read using the same conversion specifier in a format
string. Also, a sentinel must not be contained in the set of legal data values because it must be an unambiguous
signal that there are no more data sets to process.

A sentinel loop is used when the number of data items to be processed varies from session to session,
depending on the user’s needs, and cannot be known ahead of time. This happens in many contexts, including

• When reading a series of input data sets.

• When processing string data.4

• When processing data that are stored in an array or a list in which the sentinel value is stored at the end
of the data5.

Input-controlled sentinel loops are the only kind that we are ready to examine at this time6. An input-controlled
sentinel program reads and processes input values; the sentinel value must be entered from the keyboard as
a signal that there is no more input. The loop compares each input value to the sentinel and ends the input
process if a match is found. Such programs follow this general form:

// Comments that explain the purpose of the program.
#include commands.
#define the sentinel value.

int main( void )
{

Declaration of input variable and others.
Output statement that identifies the program.

Use scanf() to initialize the input variable.
while (input != sentinel value) {

Process the input data.
Prompt for and read another input.

}
Print program results and termination comment.
return 0;

}

The user prompts must give clear instructions about the sentinel value. Otherwise, the user will be unable
to end the loop. For example, consider the cash register program in Figure 6.10, which uses a simple input-
controlled sentinel loop. The initial prompt gives clear instructions about how to end the processing loop.
Sentinel loops are implemented with while or for(;;) statements, rather than a do...while statement, because
it is important not to try to process the sentinel value. The do...while statement processes every value before
making the loop test, whereas the while loop makes the test before processing the value. Thus, a while loop
can watch for the sentinel value and leave the loop when it appears without processing it. Figures 6.24 and
6.25 show two ways that a for statement can be used to implement a sentinel loop.

4Strings will be introduced in Chapter 12.
5Arrays will be introduced in Chapter 10 and lists in Chapter ??.
6The other sentinel loops will be introduced in Chapters 10, 12, and ??.
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Compute the sum of a series of prices entered by the user.

#include <stdio.h>

#define SENTINEL 0

int main ( void )

{

double input; // Price of one item.

double sum = 0; // Total price of all items.

printf( " Cash Register Program.\n Enter the prices; use 0 to quit.\n> " );

scanf ( "%lg", &input ); // Read first price.

while (input != SENTINEL) { // Sentinel value is 0

sum += input; // Process the input.

printf( "> " ); // Get next input.

scanf( "%lg", &input );

}

printf( " Your order costs $%g\n", sum );

return 0;

}

Output from a sample run:

Cash Register Program.
Enter the prices; use 0 to quit.

> 3.10
> 29.98
> 2.34
> 0
Your order costs $35.42

Figure 6.10. A cash register program.

6.2.2 Query Loops

If the loop variable is either initialized or updated by scanf() or some other input function, we say that it
is an input-controlled loop. Such loops are very important because they allow a program to respond to
the real-world environment. There are several variations on this theme, including query loops, sentinel loops
(Section 6.2.1), and input validation loops (Section 6.2.4).

A useful interactive technique, the repeat query, is introduced in Figure 6.11 and used in Figure 6.12.
(It will be refined, later, in Chapter 8.) To develop and debug a program, the programmer must test it with
several sets of input so that its performance with different kinds of data can be checked. We use a repeat query
loop to automate this process of rerunning a program. Until now, you have needed to execute a program once
for each line in your test plan. After each run, the output must be captured and printed. At best, the process
is awkward. At worst, the programmer is tempted to shortcut the testing process. A typical program with a
query loop follows the general form shown in Figure 6.11.

The testing process can be simplified by writing a function that processes one line of the test plan. The
main program contains a do...while loop that calls the function once and asks whether the user wishes to
do it again. This provides a simple, convenient way to let the user decide whether to continue running the
program or quit, rather than restarting it every time. Furthermore, all the output for all of the tests ends up
in one place at one time. The basic technique is illustrated in Figures 6.11 through 6.13.

Notes on Figure 6.11. Form of a query loop.

• Programs that use this technique will have a few statements at the beginning of main() that may open
files, clear the screen, or print output headings.

• At the end are statements to print final results and any closing message.
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Many programs perform a process repeatedly, until the user asks to stop. This is the general form of such a
program. The process is performed by a function called from the main loop.

// Comments that explain the purpose of the program.
#include and #define commands.

int main( void )
{

Declaration of variable for query response;

Output statement that identifies the program;
do {

Process one data set or call a function to do so;
Ask the user whether to continue (1) or quit (0);
Read the response;

} while (response != 0);

Print program results and termination comment;
}

Figure 6.11. Form of a query loop.

• In between is a do...while loop. The loop body consists entirely of a call on a function that performs
the work of the program, followed by a prompt to ask the user whether or not to repeat the process. The
response is read and immediately tested. If the user enters the code 0,7 control leaves the loop. If 1 (or
an erroneous response) is entered, the process is repeated.

Figure 6.14 shows a diagram of a query loop (on the left) used to repeat a calculation (the function
diagrammed on the right). The dotted lines show how control goes from the function call to the entry point of
the function and from the function return back to the call box.

Notes on Figure 6.12. Repeating a calculation. We put almost all of the program’s code into a
function called work(). The main program contains only greeting and closing messages, a loop that calls the
work() function to do all the work, and the input statements needed to control the loop. Figure 6.14 is a flow
diagram of this program.

First box: prototypes for the two programmer-defined functions. Two programmer-defined functions
that follow the main program in the source code file are shown in Figure 6.13. The work() function is called
from main(). It, in turn, calls drop().

Outer box: the main process loop.
• Compare this version of the program to the versions in Figures 3.10 and 5.15. The input, calculations, and

output have been removed from main() and placed in a separate function, named work(). These lines have
been replaced by a loop that will call the work() function repeatedly (inner box), processing several data
sets. This keeps the logic of main() simple and easy to follow.

• We use a loop because we expect to process a series of inputs. Since we do not know how many will be
needed ahead of time, we ask the user to tell us what to do after each loop repetition.

• We prompt for a ’y’ to do the process again or a ’n’ to quit; the response is read into the variable
do_it_again.

• As long as the values we read for do_it_again are not ’n’, we call the work() function to read another
input value and perform the computation and output processing. If the user’s input is an error, that is, it
is neither a ’y’ nor an ’n’ , this program continues; it quits only if the user enters ’n’.

Notes on Figure 6.13: The work() and drop() functions.

7We use a 1 or 0 response here because it is simple. In Chapter 8, we show how to process y or n responses.
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This main program consists of statements to print the program titles and a loop that will repeatedly call the
work() function, given in Figure 6.13, until the user asks to quit. This main program can be used to repeat
any process by changing the titles and the work() function.

// ----------------------------------------------------------------------

// Determine the time it takes for a grapefruit to hit the ground when it

// is dropped, with no initial velocity, from a helicopter hovering

// at height h. Also determine the velocity of the fruit at impact.

// ----------------------------------------------------------------------

#include <stdio.h>

void work( void );

double drop( double height );

int main( void )

{
char do_it_again; // repeat-or-stop switch

puts( "\n Calculate the time it would take for a grapefruit\n"

" to fall from a helicopter at a given height.\n" );

do { work();

printf( " \n Enter ’y’ to continue or ’n’ to quit: " );

scanf( " %c", &do_it_again );

} while (do_it_again != ’n’);

return 0;

}

Figure 6.12. Repeating a calculation.

Background. Most of the code from the main() program in Figure 5.15 has been moved into the work()
function. This reduces the complexity of main() and makes it easy to repeat the gravity calculations with
several inputs. The work() function contains all the declarations and code that relate to the computation. The
main() program contains only start-up code, termination code, and the loop that calls the work() function.
vspace*-1ex

The flow of control. The function call in main() sends control into the work() function, where we read
one input and calculate the time of fall by calling the drop() function. After returning from drop(), we
calculate the terminal velocity and print the time and velocity. Then we return to main(). In the flow diagram
(Figure 6.14), these shifts of control are represented by dotted lines.

The output. Lines printed by the main() program are intermixed with lines from the work() function. Here
is a sample dialog:

Calculate the time it would take for a grapefruit
to fall from a helicopter at a given height.

Enter height of helicopter (meters): 20
Time of fall = 2.01962 seconds
Velocity of the object = 19.8057 m/s

Enter ’y’ to continue or ’n’ to quit: 1
Enter height of helicopter (meters): 906.5

Time of fall = 13.597 seconds
Velocity of the object = 133.34 m/s

Enter ’y’ to continue or ’n’ to quit: 2
Enter height of helicopter (meters): 2000.5

Time of fall = 20.1987 seconds
Velocity of the object = 198.082 m/s

Enter ’y’ to continue or ’n’ to quit: 0

As you begin to write programs, incorporate a processing loop into each one. It then will be convenient for
you to test your code on a variety of inputs and demonstrate that it works correctly under all circumstances.
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The work() function is called from the program in Figure 6.12. The drop() function is a more concise
version of the one in Figure 5.18.

// ------------------------------------------------------

// Perform one gravity calculation and print the results.

void

work( void )

{

double h; // height of fall (m)

double t; // time of fall (s)

double v; // terminal velocity (m/s)

printf( " Enter height of helicopter (meters): " );

scanf( "%lg", &h );

t = drop( h ); // Call drop with the argument h.

v = GRAVITY * t; // velocity of grapefruit at impact

printf( " Time of fall = %g seconds\n", t );

printf( " Velocity of the object = %g m/s\n", v );

}

// ------------------------------------------------------

// Calculate time of fall from a given height. ----------

double

drop( double height )

{

double answer = 0;

if (height > 0) answer = sqrt( 2 * height / GRAVITY );

return answer;

}

Figure 6.13. The work() and drop() functions.

6.2.3 Counted Loops

Many loops are controlled by a counter. In such a counted loop, an initialization statement at the top of the
loop usually sets some variable, say k, to 0 or 1. The update statement increments k, and the loop test asks
whether k has reached or exceeded some goal value, N. To calculate the trip count, that is, the number of
times the loop body will be executed,

• Let the initial value of the loop variable be I and the goal value be N .

• If the loop test has the form k < N, the trip count is N − I.

• If the loop test has the form k <= N, the trip count is N − I + 1.

The loops diagrammed in both Figures 6.4 and 6.15 are counted loops. In the first example, the loop
variable is k, the initial value is 0, and the test is k<10; so this loop will be executed 10 times, with k taking on
the values 0 . . . 9, successively. If an initial value of 1 and a loop test of k <= N were used, the loop body still
would be executed 10 times, but the sum would be different, because k would have the values 1 . . . 10. Both
patterns of loop control are common. A frequent source of program error is using the wrong initial value or
the wrong comparison operator in the loop test.

A summation loop. Our next example, in Figure 6.15, shows how a counted loop can be used to sum a
series of numbers. This example demonstrates a typical programming pattern in which two variables are used:
a counter (to record the number of repetitions) and an accumulator (to hold the sum as it is accumulated).
Both variables are initialized before the loop begins and both are changed on every trip through the loop. The
flow diagram for this program (shown following the code) is very similar to that in Figure 6.4, since the same
loop structure is being used.
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This is a flow diagram of the program in Figures 6.12 and 6.13. The dotted lines show how the control
sequence is interrupted when the function call sends control to the beginning of the function. Control flows
through the function then returns via the lower dotted line to the box from which it was called.

 t = drop(h)     
double  h, t, v

Display  titles.

   Prompt  for and read input:  
   height of fall, h, ( meters)

return

v = Velocity at impact = GRAVITY*t
Print  t  and  v.

 

return

 char  do_it_again

main ( )

true

false

  Prompt for and read 
  the do-it-again signal.

 work(   )

do

while

work 
  ( )

do_it_again 
   == 'n' ?

Figure 6.14. Flow diagram for repeating a process.

Notes on Figure 6.15. SumUp.

First box: the function. The same program could be used to sum a different function by simply changing
the expression in the return statement here and the printf() statement in main().

Second box: the declarations.
• The type int is appropriate for counters such as n, that are used to count the repetitions of the loop.

• An accumulator is a numeric variable used to accumulate the sum of a series of values. These might be
computed values, as here, or input values, illustrated in Figure 6.10. We use a variable of type double for
the accumulator because it will be used to compute the total of various fractions.

Third box: the loop.
• Before entering any loop, the variables used in the loop must be initialized. We set n = 1 because we want

to sum the series from 1 to 10. We set sum = 0-->.

• The for statement is ideally suited for counted loops because the loop header organizes all the information
about where the counter starts and stops and how it changes at each step. Each time around the loop, we
add 1.0/n to the sum. This loop starts with n equal to 1 and ends when n reaches 11. Therefore, the loop
body will be executed 11− 1 = 10 times, summing the fractions 1.0/1 ... 1.0/10.

• Note that n will have the value 1 (not 0 or 2) the first time we compute 1.0/n. This is important. First,
we do not want to start computing the series at the wrong point. Second, we need to be careful to avoid
dividing by 0.

• We are permitted to divide the double value 1.0 by the integer value n. The result is a fractional value of
type double. It is important that the constant 1.0 be used rather than 1 in this expression, because the
latter will give an incorrect result. The reason for this is discussed in Chapter 7.

Fourth box: the output.
• We use the format %g to print the double value. Up to six digits (C’s default precision) will be printed with

the result rounded to the sixth place. Trailing 0’s, if any, are suppressed after the decimal point.

• The output from this program is
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This program computes the sum of the first N terms of the series 1/n.

#include <stdio.h>

#define N 10

double f( double x) { return 1.0 / x; } // The function to sum.

int main( void )

{

int n; // Loop counter

double sum; // Accumulator

printf( "\n Summing 1/n where n goes from 1 to %i \n", N );

sum = 0; // Start accumulator at 0.

for (n = 1; n <= N; ++n) { // Sum series from 1 to N.

sum += f( n );

}

printf( " The sum is %g.\n", sum );

return 0;

}

Print  program titles.
sum = 0.0 

return

  int  n
  double sum

main ( )   n = 1 false
n <= N

++n

 sum += f(n)

true

   print  sum

Figure 6.15. Summing a series.

Summing 1/n where n goes from 1 to 10
The sum is 2.92897.

6.2.4 Input Validation Loops

Figure 6.16 contains a validation loop based on a while statement. It provides good user feedback but is long
and requires duplicating lines of code. We can write a shorter, simpler validation loop that uses a do...while
statement. However, this kind of validation loop has a severe defect: It gives the same prompt for the initial
input and for re-entry after an error. This is a human-engineering issue. The error may go unnoticed if the
program does not give distinctive feedback. A third kind of validation loop can be written with for and
if...break statements that combines the advantages of the other two forms; it avoids duplication of code and
provides informative feedback when the user makes an error (see Figure 6.15).

Notes on Figure 6.16: Input validation using a while statement.

1. The input prompt scanf() and calculation statements are written before the loop and again in the body
of this loop. This duplication is undesirable because both sets of statements must be edited every time
the prompt or input changes. The duplication is unavoidable, though, because the loop variable, hours,
must be given a value before the while test at the top of the loop. It then must be given a new value
within the loop.

2. The while test checks whether the value of hours is within the legal range. If not, we enter the body of
the loop, print an error comment, and prompt for and read another input. Then control returns to the
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This input validation loop is a fragment of the miles-per-hour program in Figure 3.15. Some output from
the loop and the following printf() statement follow.

printf( " Duration of trip in hours and minutes: " );

scanf( "%lg%lg", &hours, &minutes );

hours = hours + ( minutes / 60 );

while (hours < 0) {

printf( " Please re-enter; time must be >= 0: " );

scanf( "%lg%lg", &hours, &minutes );

hours = hours + ( minutes / 60 );

}

Output:

Duration of trip in hours and minutes: -148 43
Please re-enter; time must be >= 0: 1 -70
Please re-enter; time must be >= 0: 148 -17
Average speed was 1.94291

Figure 6.16. Input validation using a while statement.

top of the loop to test the data again.

3. Since only a legal input will get the user out of this loop, an informative prompt is very important. If
the user is not sure what data values are legal, the program may become permanently stuck inside this
loop and it may be necessary to reboot the computer to regain control.

6.2.5 Nested Loops

A general rule of programming is that function follows form, that is, the form or shape of the input or output
data frequently determines the way that code is written to process it. This is never more true than when
processing tables. The rows and columns of a table are reflected in the code in the form of a loop to process
the columns written within a loop that process the rows. We call such a control structure a nested loop8. This
control structure is illustrated in a simple but general form by the program in Figure 6.17, which prints a
10-by-12 multiplication table. Its flow diagram is given in Figure 6.18.

Notes on Figure 6.17. Printing a table with nested for loops. This program prints an R-by-C
multiplication table, where R and C are #defined as 10 and 12.

Outer box: The row loop. The outer loop is executed 10 times, once for each row of the table. Its body
consists of the code to process one row; it prints a row label, processes all columns (the inner loop), and finishes
the row by printing a newline and a vertical bar on the next line. This is a very typical processing pattern for
a nested loop that does output. The output from one repetition, one row of numbers followed by a blank row
looks like this:

1. | 1 2 3 4 5 6 7 8 9 10 11 12
|

Inner box: the column loop. The output from each repetition of the inner loop is one column of one row
of the table, consisting of two or three spaces and a number. The printf() in the inner loop will be executed
12 times per trip through the outer loop. After the 12th number has been printed, the inner loop exits and
control goes to the printf() at the end of the outer box.

8For processing two-dimensional arrays, a for loop within a for loop is the dominant control pattern. This will be fully
explored in Chapter 18.
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This program prints a multiplication table with 10 rows and 12 columns. The line number and a vertical
line are printed along the left margin.

#include <stdio.h>

#define R 10

#define C 12

int main( void )

{

int row, col;

banner();

printf( "\n\n Multiplication Table \n\n" );

for (row = 1; row <= R; ++row) { // Print R rows.

printf( "%2i. |", row ); // Print left edge of row.

for (col = 1; col <= C; ++col) { // Print C columns in each row.

printf( "%4i", row * col );

}

printf( "\n |\n" ); // Print blank row.

}

printf( "\n\n" );

return 0;

}

Figure 6.17. Printing a table with nested for loops.

true

printf("\n\n")
;

col=1;

printf("%4i", row * col);

col<=16;
++col

endrow=1;

truerow<=10;
++row

printf("\n\n");

printf("\n |\n"); printf("%2i. |", row);

false

start

false

Figure 6.18. Flow diagram for the multiplication table program.
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After 120 trips. In this program, control goes through the outer loop 10 times. For each trip through the
outer loop, control goes through the inner loop 12 times. Therefore, control passes through the body of the
inner loop (a printf() statement) a total of 120 times, processing every column in every row of the table. After
finishing the 10th row, control goes to the final printf() and the return statement. The complete output is

Multiplication Table

1. | 1 2 3 4 5 6 7 8 9 10 11 12
|

2. | 2 4 6 8 10 12 14 16 18 20 22 24
|

3. | 3 6 9 12 15 18 21 24 27 30 33 36
|

4. | 4 8 12 16 20 24 28 32 36 40 44 48
|

5. | 5 10 15 20 25 30 35 40 45 50 55 60
|

6. | 6 12 18 24 30 36 42 48 54 60 66 72
|

7. | 7 14 21 28 35 42 49 56 63 70 77 84
|

8. | 8 16 24 32 40 48 56 64 72 80 88 96
|

9. | 9 18 27 36 45 54 63 72 81 90 99 108
|

10. | 10 20 30 40 50 60 70 80 90 100 110 120
|

6.2.6 Delay Loops

A loop that executes many times but does nothing useful can be used to make the computer wait for a while
before proceeding. Such a loop is called a delay loop. Delay loops often are used like timers to control the
length of time between repeated events (see Figure 6.19). For example, a program that controls an automated
factory process might use a delay loop to regulate sending analog signals to (or receiving them from) a device
such as a motor generator.

Notes on Figures 6.20 and 6.19. Delaying progress, the delay() function. The delay() function
implements a delay loop (see Figure 6.20). It calls the C library function time() to read the computer’s
real-time clock and return the current time, in units of seconds, represented as an integer so that we can do
arithmetic with it. The type time_t is defined9 by your local C system to be the right kind of integer10 for
storing the time on your system.

We add the desired number of seconds of delay to the current time to get the goal time, then store it in
the variable goal. The loop calls time() continuously until the current time reaches the goal time. This loop
is all test and no body. Technically, it is called a busy wait loop because it keeps the processor busy while
waiting for time to pass. It is busy doing nothing, that is, wasting time11. On a typical personal computer,
the time() function might end up being called 100,000 times or more during a delay of a few seconds. Busy
waiting is an appropriate technique to use when a computer is dedicated to monitoring a single experiment or
process. It is not a good technique to use on a shared computer that is serving other purposes simultaneously.

A delay loop usually is used inside another loop, which must perform a process repeatedly at a particular
rate that is compatible with human response or a process being monitored. For example, the boxed loop in
Figure 6.19 is used to time repetitions of an exercise. It outputs \a (a beep), then calls delay(), which waits
the number of seconds specified by the user before returning. The output looks like this:

This is an exercise program.

How many pushups are you going to do? 5
How many seconds between pushups? 3
OK, we will do 5 pushups, one every 3 seconds.
Do one pushup each time you hear the beep.
1
2

9Type definitions are discussed in Chapters 8, 12, 13, and 18.
10The various kinds of integers are discussed in Chapter 7.
11This is legal in C; a loop is not required to have any code in its body.
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A delay loop is used here to regulate repetitions of a process.

#include <stdio.h>

void delay( int seconds );

int main( void )

{

int j, max, seconds;

printf( "This is an exercise program.\n\n"

"How many pushups are you going to do? " );

scanf( "%i", &max );

if (max < 0) {

printf( "Can’t do %i pushups!\n", max );

exit( 1 );

}

printf( "How many seconds between pushups? " );

scanf( "%i", &seconds );

if (seconds < 3) {

printf( "Can’t do a pushup in %i seconds!\n", seconds );

exit( 1 );

}

printf( "OK, we will do %i pushups, one every %i seconds.\n",

"Do one pushup each time you hear the beep.\n", max, seconds );

for (j = 1; j <= max; ++j) {

printf( "%i \a\n", j ); // Do one.

delay( seconds ); // Wait specified # of seconds.

}

puts( "Good job. Come again." );

}

Figure 6.19. Using a delay loop.

You may wish to put this function in your personal mytools library.

#include <time.h>

void delay( int seconds )

{
time_t goal = time( NULL ) + seconds; // Add seconds to current time.

do { // Nothing } while (time( NULL ) < goal);

}

Figure 6.20. Delaying progress, the delay() function.
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The only exit from this loop is through the break statement. The for header is used to initialize and update
a counter but it has no exit test.

false  condition

breaktrue

code more 
code 

initialize

update

false  data == 0?

breaktrue

Prompt for input using 
0 as a sentinel value.

Display the item 
prompt; read data.

Process  the 
data item. 

++count

count = 0

Figure 6.21. A structured loop with break.

3
4
5
Good job. Come again.

6.2.7 Flexible-Exit Loops

Some languages support a kind of loop that permits the programmer to place the loop test anywhere between
the beginning and the end of the loop body. Such a loop takes the place of the while and do...while loops in C
and also provides other options. At the same time, it remains a one-in, one-out control structure, and therefore,
is consistent with “structured programming”. This sort of flexibile-exit structured loop can be imitated in C
by a combination of three control statements: a for statement with empty loop test12, where the only exit is
by way of an if statement and a break statement somewhere within the loop body13. The skeleton of a for
loop with an if...break is shown below and diagrammed on the left in Figure 6.21.

for (initialization; ; update) {
statements
if (condition) break;
more statements

}
next statement // Control comes here after the break.

This degenerate statement sometimes is called an infinite for loop because the loop header has no test
that can end the execution of the loop. A real infinite loop is not particularly useful because it never ends.
However, an infinite for loop normally contains an if...break statement and, therefore, is not infinite because
the if...break provides a way to leave the loop. Applications of the infinite for loop are shown in Figure 6.22,
where it is used for data validation, and in Figure 12.37, where an infinite loop is combined with a switch to
implement a complex control structure.

A loop that exits by means of an if...break statement has one big advantage over an ordinary loop: the
loop body can have some statements before the loop test and more statements after it. This flexibility makes it
easier to write code in many situations: it provides a straightforward, clear, nonredundant way to do jobs that
are awkward when done with other loops. Its primary application is in loops that depend on some property
of data that is being read and processed. The first part of the loop does the input or calculation, followed
immediately by the test that stops the looping when data with a specified property is found.

12It is legal to omit one, two, or all of the expressions in the loop header. However, the two semicolons must be present.
13Some practitioners use while (1) or while (true) instead of for (;;). However, B. Kernighan, one of the inventors of C,

wrote to me that he prefers the for(;;), possibly because it avoids writing a meaningless test condition.
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Compare this input validation loop to the version in Figure 6.16 that is built on the while statement. This
form is simpler and avoids duplication. The output is identical to the output from Figure 6.16.

printf( " Duration of trip in hours and minutes: " );

for (;;) {

scanf( "%lg%lg", &hours, &minutes );

hours = hours + ( minutes / 60 );

if (hours >= 0) break; // Leave loop if input is valid.

printf( " Please re-enter; time must be >= 0: " );

}

Figure 6.22. Input validation loop using a for statement.

Notes on Figure 6.22. Input validation using a for statement. Compare the code in Figure 6.22 to
the validation loop in Figure 6.16.

1. The original input prompt is written before the loop because it will not be repeated. (The error prompt
is different.)

2. This loop can be written using a while statement as in Figure 6.16. However, since the while test is
at the top of the loop, this implementation requires the input and calculation statements to be written
twice, once before the loop and once in the loop body.

3. In contrast, if we use a flexible-exit loop, there is no need to write the scanf() and computation twice.
The resulting code is simpler and clearer.

4. The input and calculation statements are done before the loop test, which is in an if...break statement.
If the input is valid, control leaves the loop.

5. If not, we print an error prompt, return to the top of the loop, and read new data.

6. Since only a legal input will get the user out of this loop, an informative prompt is very important. If
the user is not sure what data values are legal, the program may become permanently stuck inside this
loop, and it may be necessary to reboot the computer to regain control.

6.2.8 Counted Sentinel Loops

Earlier in this section, we discussed a sentinel loop based on while. Often, we combine the sentinel test with
a loop counter to make a counted sentinel loop. The general design for such a loop is given on the left in
Figure 6.23. In this design, LIMIT is the maximum number of times the loop should be repeated, and SENTINEL
is the designated sentinel value. To illustrate this pattern, we add a counter to the cash register program from
Figure 6.10. The improved program is shown in Figure 6.24.

Two designs are given for a counted sentinel loop. The version on the left is simpler. The version on the
right avoids use of break.

for (k = 0; k < LIMIT; ++k) {

Prompt for and read an input.

if (input == SENTINEL) break;

Process the input data.

}

int done = 0; // false

for (k = 0; k < LIMIT && !done; ++k) {

Prompt for and read an input.

if (input == SENTINEL) done = 1; // true

else {

Process the input data.

}

}

Figure 6.23. Skeleton of a counted sentinel loop.
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We use a for loop to count the number of data items that are entered, and a break statement to leave the
loop when the input is a designated sentinel value.

#include <stdio.h>

#define SENTINEL 0 // Signal for end of input.

int main( void )

{

double input; // Price of one item.

double sum; // Total price of all items.

int count; // Number of items.

puts( " Cash Register Program.\n"

" Enter prices; 0 to quit." );

for (count=sum=0; ;++count) {

printf( "--> " );

scanf( "%lg", &input );

if (input == SENTINEL) break;

sum += input;

printf( "\t Input: %g\n", input );

} printf( " Your %i items cost $%g\n", count, sum );

return 0;

}

The output is :

Cash Register Program.

Enter prices; 0 to quit.

--> 3.17

Input: 3.17

--> 2.35

Input: 2.35

--> 0.78

Input: 0.78

--> 10.52

Input: 10.52

--> 0

Your 4 items cost $16.82

Figure 6.24. Breaking out of a loop.

This program uses a status flag (done) instead of a break instruction to leave the loop. Compare it the
simpler logic of Figure 6.24, that relies on the break.

#include <stdio.h>

#define SENTINEL 0 // Signal for end of input.

int main( void )

{

double input; // Price of one item.

double sum; // Total price of all items.

int count; // Number of items.

int done = 0; // Set to 1 when sentinel is entered.

puts( " Cash Register Program.\n Enter prices; 0 to quit." );

for (count=sum=0; !done ;++count) {

printf( "--> " );

scanf( "%lg", &input );

if (input == SENTINEL) done = 1;

else {

sum += input;

printf( "\t Input: %g\n", input );

}

} printf( " Your %i items cost $%g\n", count-1, sum );

return 0;

}

Figure 6.25. Avoiding a break-out.
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Two designs are given for a search loop, with and without the use of break.

Read or select the key value.

for (k = 0; k < LIMIT; ++k) {

Calculate / select next item to test.

if (current_data == key_value) break;

}

int done = 0; // false

Read or select the key value.

for (k = 0; k < LIMIT && !done; ++k) {

Calculate / select next item to test.

if (current_data == key_value) done = 1;

}

Figure 6.26. Skeleton of a search loop.

Moving the exit test to the top. A counted sentinel loop can be written two ways, with and without the
use of break. Some professionals believe that the break statement should never be used because it is possible to
overuse break and use it as a substitute for clean logic design. It is possible to implement the flexible-exit loop
without the break statement by adding only a few lines of code. The loop design on the right of Figure 6.23
shows the kind of additions that are necessary to avoid the break.

We have added a status variable, done, that is set to false initially and then to true when the designated
sentinel value is read. The “more code” section of the loop body is enclosed in an else clause so that the
sentinel value will not be processed. Then the status variable is tested again and the loop ends. This is slightly
less efficient and slightly longer to write than the version that uses break. Note, also, that the counter will be
incremented one extra time and, therefore, we must subtract one from its value to get the true number of items
that have been processed. The program in Figure 6.25 uses this logic.

6.2.9 Search Loops

A search loop examines a set of possibilities, looking for one that matches a given “key” value. The data
items being searched can be stored in memory or calculated. The key value could be the entire item or part of
it and it could be of any data type. The requirements for searching are almost identical in all cases:

• The program must know what key value to look for.

• There must be some orderly way to examine the possibilities, one at a time, until all have been checked.

• The loop must compare the key value to the current possibility. If they match, control must leave the
loop.

• The search loop must know how many possibilities are to be searched or have some way to know when
no possibilities remain. The loop must end when this occurs.

Therefore, the search loop will terminate for two possible reasons: The key item has been found or the
possibilities have been used up. The most straightforward way to implement this control pattern is to use a
counted sentinel loop, with either the status flag or the break statement. The general pattern of a search loop
is shown in Figure 6.26.

A search loop based on data input is shown in Figure 6.32. Search loops based on computed possibilities
are illustrated in Figures ?? and in the Newton’s method program on the text website. Search loops become
increasingly important when there are large amounts of stored data. Loops that search arrays are illustrated
in Chapter 18.

6.3 The switch Statement

C provides three ways to make a choice: the if...else statement, the switch statement, and the conditional
operator. The if...else was fully covered in Chapter 3, this section is devoted to the switch, and the
conditional operator is explained in Appendix D.

6.3.1 Syntax and Semantics

A switch implements the same control pattern as a series of if...else statements. (Refer to Figure 3.11.) In
both, we wish to select one action from a set of possible actions. A switch could be thought of as a shorter,
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integrated notation for the same logic as a nested if...else statement. Normally, one would use if...else
when there are only two alternatives; a switch is only helpful when there are more than two choices.

The syntax of a switch statement. To illustrate the syntax and use of the switch statement, we use a
program whose specification is given in Figure 6.27 and program code in Figure 6.29. A switch statement has
several parts, in this order:

1. The keyword switch

2. An expression in parentheses that computes a value of some integral type14

14C has several integral types in addition to int; they will be introduced in the next few chapters. These include char, short,

Problem scope: A contractor wants to automate the process of selecting an appropriate gauge wire for
extension cords and temporary wiring at construction sites. Various long wires are used to supply electricity
to power tools and other appliances at the site. All wires are standard annealed copper; calculations are
to be made for a standard temperature of 20◦C. There is a voltage drop in an extension cord due to the
resistivity of its wire; heavier cords (lower-numbered gauges) have lower resistivity and incur less drop than
lighter cords (higher-numbered gauges). The voltage drop is proportional to the length of the wire, so the
drop can be significant in a long wire. This is an issue because appliances designed to operate at one voltage
may overheat if operated at a voltage that is significantly lower. This program should evaluate a proposed
wiring scheme and answer whether the wire will be adequate for its intended purpose.

Formula: An extension cord n meters long contains 2n meters of wire. The voltage drop is

extension cord power source

wlen 
(meters)

appliance  (amps)

2     wlen (m)
1000

voltage drop  = I (amps) r (ohms/km)

where wlen is the length of the extension cord (in meters), ρ (rho) is the resistivity of the wire, and I is the
current flowing in the wire, in amperes.

Constants: A voltage drop of up to 5 volts is acceptable. The resistivity, ρ, of copper wire at 20◦C for
the gauges used by this contractor are

Gauge ρ

12 5.211
14 8.285
16 13.17
18 20.95

Inputs: The contractor will type in the length of the extension cord he needs, the wire gauge, and the
current rating (amps) of the appliance he will be using. The program should reject any gauge that is not in
the table above.
Output required: Program headings and a termination message should be printed. Input values should
be echoed. The voltage drop and the answer (gauge is adequate or not adequate) should be given. Three
digits of precision are adequate.

Figure 6.27. Problem specification: Wire gauge adequacy evaluation.
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We diagram a series of if...else statements that
implements the specification in Figure 6.27.

gauge ==12 rho = 5.211

rho = 13.17

true

rho = 20.95

 print error comment

false

rho = 8.285
if true

true

true
false

false

falseif

if

if

gauge ==14

gauge ==16

gauge ==18

We diagram the same logic again using a switch

statement instead of an if...else statement.

switch 
gauge == ?

default

rho = 5.211

break
rho = 13.1716

12

break

break

18  rho = 20.95

 print error comment

break
rho = 8.28514

Figure 6.28. Diagrams for a nested conditional and a corresponding switch.

3. Braces enclosing a series of labeled cases. The case labels must be constants or constant expressions15

of the same type as (2).

4. Each case contains a series of statements. The last statement in the series is usually, but not always, a
break statement.

5. One of the cases may be labeled default. If a default case is present, it is traditional (but not necessary)
to place it last.

6. If several cases require the same processing, several case labels may be placed before the same statement.
The last label may be default.

Execution of a switch statement. When a switch is executed, the expression in (2) is evaluated and
its value compared to the case labels. If any case label matches, control will go to the statement following
that label. Control then proceeds to the following statement and through all the statements after that until
it reaches the bottom of the switch. This is not normally what a programmer wishes to do. It is far more
common to want the cases to be mutually exclusive. This is why each group of statements normally ends with
a break statement that causes control to skip around all the following cases and go directly to the end of the
switch statement. Programmers sometimes absentmindedly forget a break statement. In this case, the logic
flows into the next case below it instead of to the end of the switch statement. Remember, this is not an error
in the eyes of the compiler and it will not cause an error comment.

If no case label matches the value of the expression, control goes to the statement following the default
label. If there is no default label, control just leaves the switch statement. This does not cause an error at
either compile time or run time.

Diagramming a switch statement. The diagram of a nested if...else statement has a series of diamond-
shaped if boxes, each enclosing a test, as shown on the left in Figure 6.28. The true arrow from each box
leads to an action and the false arrow leads to the next if test. These tests will be made in sequence until
some result is true.

long, unsigned short, unsigned int, and unsigned long.
15A constant expression is composed of operators and constant operands.
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In contrast, the diagram of a switch statement has a single diamond-shaped test box with a branching
“out” arrow. This box encloses an expression whose value will be compared to the case labels. One branch is
selected and the corresponding actions in the body of the switch statement are executed. Each set of actions
must end in a break statement. Control normally enters a box from the case label and leaves by an arrow that
goes directly to the connector at the end of the switch statement. The diagram on the right of Figure 6.28
shows the switch statement that is used in Figure 6.29. Compare this to the if...else to its left. They
implement the same logic; however, the version that uses switch is simpler.

6.3.2 A switch Application

Figure 6.29 shows a program that implements this switch statement to solve the problem specified in Fig-
ure 6.27. It illustrates “messy” integer case labels; that is, they are not consecutive numbers starting at 0 or
116.

Notes on Figure 6.29: Using a switch.

First box: input for the switch. We display a list of available gauges and prompt the user for a choice.
The user sees this set of choices:

Wire Gauge Adequacy Evaluation

Please choose gauge of wire:
12 gauge
14 gauge
16 gauge
18 gauge

Enter selected gauge:

Second box: the switch statement.
• A switch that processes an integer input must have integer constants for case labels. This switch has four

cases to process the four gauges plus a default case for errors.

• Each “correct” case contains one assignment statement that stores the resistivity value for the selected
gauge wire. Each assignment is followed by a break that ends the case. A default case does not need a
break because it is always last.

• If more extensive processing is needed, a program might call a different function to process each case.

• Error handling is done smoothly in this program. The default case intercepts inputs that are not supported
and calls fatal() to print an error comment and abort the program. By calling fatal(), we avoid printing
meaningless answers. An example would be

Enter selected gauge: 11
Gauge 11 is not supported.

WireGuage has exited with status 1.

Third box: calculating the voltage drop.
• Control goes to this box after every break. It does not go here after executing the default clause because

that clause calls fatal(), which aborts execution.

• This box prompts for and reads the rest of the input data. This is done after the switch statement, not
before, because the menu selection can be an invalid choice and there is no point reading the rest of the
data until we know the gauge is one of those listed in the table.

• We calculate the voltage drop as soon as all the data have been read. The formula for voltage drop uses the
resistivity value selected by the switch statement. We divide by 1,000 because ρ is given in ohms/kilometer
and the wire length is given in meters. We multiply by 2 because each extension cord contains a pair of
wires running its full length.

16More applications of the switch statement are shown in Figures ??, 12.34, and 15.27.
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The specifications for this program are in Figure 6.27.

#include <stdio.h>

#include <stdlib.h>

#define MAXDROP 5.0 // volts

int main( void )

{
int gauge; // selected gauge of wire

double rho; // resistivity of selected gauge of wire

double amps; // current rating of appliance

double wlen; // length of wire needed

double drop; // voltage drop for selected parameters

printf( "\n Wire Gauge Adequacy Evaluation" );

printf( "\n Please choose gauge of wire:\n"

"\t 12 gauge \n\t 14 gauge \n"

"\t 16 gauge \n\t 18 gauge \n"

" Enter selected gauge: " );

scanf( "%i", &gauge );

switch (gauge) {

case 12: rho = 5.211; break;

case 14: rho = 8.285; break;

case 16: rho = 13.17; break;

case 18: rho = 20.95; break;

default: printf( " Gauge %i is not supported.\n", gauge );

exit(1);

}

printf( " Enter current rating for appliance, in amps: " );

scanf ( "%lg", &amps );

printf( " Enter the length of the wire, in meters: " );

scanf ( "%lg", &wlen );

drop = 2 * wlen / 1000 * rho * amps ;

printf( "\n For %i gauge wire %g m long and %g amp appliance,\n"

" voltage drop in wire = %g volts. (Limit is %g.) \n"

gauge, wlen, amps, drop, MAXDROP );

if (drop < MAXDROP)

printf( "\n Selected gauge is adequate.\n" );

else

printf( "\n Selected gauge is not adequate.\n" );

return 0;

}

Figure 6.29. Using a switch.
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1. Problem scope: Write a program to play an interactive guessing game with the user. The user is
given a fixed number of guesses to find a hidden number.

2. Constants: The hidden number will be between 1 and 30; the user will be given up to 5 guesses.

3. Inputs: The user will enter a series of guesses.

4. Output required: The program will respond each time by saying the guess is too low, correct, or
too high. If the guess is correct, the program should display the message“you win”. If the available
guesses are used up, the program should display the message“You lose”.

5. Other: An input value outside of the specified range will be counted as a wrong guess. If the user
makes optimal guesses, he can always win.

Figure 6.30. Problem specification: Guess my number.

Fourth box: the answers. We ran the program and tested two cases. Each time the program was run,
the greeting comment, menu, and termination comment were printed; for brevity, these are not repeated here.
Dashed lines are used to separate the runs.

Enter selected gauge: 12
Enter the current rating for the appliance, in amps: 10
Enter the length of the wire, in meters: 30

For 12 gauge wire 30 meters long and 10 amp appliance,
voltage drop in wire = 3.1266 volts. (Limit is 5 volts.)

Selected gauge is adequate.
-----------------------------------------------------
Enter selected gauge: 16
Enter the current rating for the appliance, in amps: 10
Enter the length of the wire, in meters: 30

For 16 gauge wire 30 meters long and 10 amp appliance,
voltage drop in wire = 7.902 volts. (Limit is 5 volts.)

Selected gauge is not adequate.

6.4 Search Loop Application: Guess My Number

The program specified in Figure 6.30 and shown in Figure 6.31 is a simple interactive game in which the player
is given a limited number of turns to guess (and enter) the hidden number. The game ends sooner if the
player’s input equals the program’s hidden number (the sentinel value). The implementation uses a counted
sentinel loop with break. The for statement is used to count the player’s guesses and the if...break is used
in the usual way to implement a possible early exit after a correct guess. Figure 6.32 is a flow diagram for this
program17.

Notes on Figures 6.32 and 6.31: A sentinel loop using for and if...break statements.

First box, Figure 6.31: the concealed number. This program is a simplification of an old game that
asks the user to guess a concealed number. The computer responds to each guess by telling the user whether
the guess was too large, too small, or right on target. In a complete program, the concealed number would be
randomly chosen and the number of guesses allowed would be barely enough (or not quite enough) to win the
game every time. We give a full version of this program in Chapter 7. In this simplification, we arbitrarily
choose 17 as the concealed number. The five guesses allowed are enough to uncover this number if the user
makes no mistakes.

Outer box: operation of the loop.
• This for loop prompts for, reads, checks, and counts the guesses. It will allow the user up to five tries to

enter the correct number. On each trial, the program gives feedback to guide the user in making the next
guess. After the fifth unsuccessful try, the loop test will terminate the loop.

• We initialize the loop counter to 1 (rather than the usual 0) because we want to print the counter value as
part of the prompt. The computer does not care about the counter values, but users prefer counters that
start at 1, not 0.

17We will revisit and elaborate on this game in Chapter 7.
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This program illustrates the simplest form of search loop: we search the input data for a value that matches
the search key. The implementation uses a counted sentinel loop with break.

#include <stdio.h>

#define TRIES 5

int main( void )

{

int k = 0; // Loop counter.

int guess; // User’s input.

int num = 17;

printf( " Can you guess my number? It is between 1 and 30.\n"

" Enter a guess at each prompt; You have %i tries.\n", TRIES );

for (k = 1; k <= TRIES; ++k) {

printf( "\n Try %i: ", k );

scanf( "%i", &guess );

if (guess == num) break;

if (guess > num) printf( " No, that is too high.\n" );

else printf( " No, that is too low.\n" );

}

if (guess == num) printf( " YES!! That is just right. You win! \n" );

else printf( " Too bad --- You lose again!\n" );

return 0;

}

Figure 6.31. An input-driven search loop.

• We use <= to compare the loop counter to the loop limit because the loop variable was initialized to 1, not
0, and we want to execute the loop when the counter equals the number of allotted trials.

• Each guess has three possibilities: It can be correct, too low, or too high. To check for three possibilities,
we need two if statements. The first if statement is in the inner box. If the input matches the concealed
number, the break is executed. Control will leave the for loop and go to the first statement after the loop.
The second if statement prints an appropriate comment depending on whether the guess is too high (the
true clause) or too low (the false clause). Control then goes back to the top of the loop.

Inner box: There are two ways to leave the loop: either the guess was correct or the guesser was unable to
find the hidden number in the number of tries allowed. Here, we test the number of guesses that were used to
distinguish between these two cases, then print a success or failure comment. This is a typical way to handle
a loop with two exit routes.

The diagram: Figure 6.32.
• A break statement is represented by an arrow and a connector, not by a rectangle, diamond, or ellipse.

Note the word break on the true arrow of the if condition diamond. The circular connector on the loop’s
exit arrow is for the break.

• The if...break statement is the first diamond in the for loop. If the guess is not correct, control stays in
the loop and enters the if...else statement at the end of the loop body. If the guess is correct, control
flows out of the loop along the break arrow and enters the code that follows the loop.
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This is a flow diagram of the program in Figure 6.31.

print "Too 
bad, I win"

     print"Too high"

k=1 false

k<=TRIES
++k

true

prompt for and 
read next guess

is guess
correct?

for

true

true

false

break

 start

k
guess
num = 
17

is guess 
> num?

 true

false

is guess 
== num?

     print"Too low"

false

     print 
"You win"

       print 
  instructions

end

Figure 6.32. A counted sentinel loop.

6.5 What You Should Remember

6.5.1 Major Concepts

• The while loop tests the loop exit condition before executing the loop body. The body, therefore, is
executed zero or more times.

• The while loop is used for sentinel loops, delay loops, processing data sets of unknown size, and data
validation loops when it is important to give the user an error comment different from an ordinary prompt.

• The for loop implements the same control pattern as the while loop but has a different and more compact
syntax.

• The for loop is used for counted loops and processing any set of data whose exact size or maximum size
is known ahead of time.

• The do...while loop executes the loop body before performing the loop exit test. Therefore, the body
is always executed one or more times.

• The do...while statement is used to form query loops that call a work() function repeatedly. It also
can be used for data validation.

• A nested loop is used to process the rows and columns of a table.

• A continue statement within any kind of loop transfers control back to the top of the loop.

• An if...break statement can be used to leave any kind of loop but normally is used to leave a for loop
before the iteration limit is reached.

• Any one or all the expressions in the loop header of a for statement can be omitted. If the loop test is
omitted, an if...break is used to end the loop. This combination is used for data validation loops.

• The switch statement has several clauses, called cases, each labeled by a constant. At run time, a single
value is compared to each constant and the clause corresponding to the matching constant is executed.
A default case will be executed if none of the case constants match.
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• Most cases in switch statements (except the last one) end with a break statement. If a case has no
break, the statements for that case and the next case will be executed.

6.5.2 Programming Style

Many programs can be improved by eliminating useless work and simplifying nested logic. The resulting
code always is simpler and easier to debug and usually is substantially shorter. Some specific suggestions for
improving program style follow:

• The golden rule of style is this: Indent your code consistently and properly.

• Line up the first letter of for, while, or switch with the curly bracket that closes the following block of
statements. Indent all the statements within the block.

• Use the switch statement instead of a series of nested if...else statements when the condition being
tested is simple enough.

• Do not compute the same expression twice—compute it once and save the answer in a variable. Any
time you do an action twice and expect to get the same answer, you create an opportunity for disaster if
the program is modified.

• If two statements are logically related, put them near each other in the program. Examples of this
principle are

1. Initialize a loop variable just before the beginning of the loop.

2. Do the input just before the conditional that tests it.

• Use the for loop effectively, putting all initializations and increment steps in the part of the loop.

• When one control structure is placed within the body of another, we call it nested logic. For example,
a switch statement can be nested inside a loop, and a loop can be nested inside one clause of an if
statement. Most real applications require the use of nested logic. Some generally accepted guidelines are
these:

1. Keep it simple. An if statement nested inside another if statement inside a loop has excessive
complexity. Many times, the if statement can be moved outside the loop or the second if statement
can be eliminated by using a logical operator.

2. Establish a regular indenting style and stick to it without exception.

3. Limit the number of levels of nesting to two or three.

4. If your application seems to require deeper nesting, break up the nesting by defining a separate
function that contains the innermost one or two levels of logic.

• To improve efficiency, move everything possible outside of a loop. For example, when you must compute
the average of some numbers, use the loop to count the numbers and add them to a total. Do not do the
division within the loop. Moving actions out of the loop frequently shortens the code; it always simplifies
it and makes it more efficient. In poorly written programs, “fat loops” account for many of the extra
lines. Take advantage of any special properties of the data, such as data that may be sorted, may have
a sentinel value on the end, or may be validated by a prior program step and not need validation again
when processed.

• During the primary debugging phase of an application, every loop should contain some screen output.
This allows the programmer to monitor the program’s progress and detect an infinite loop or a loop that
is executed too many or too few times. Debugging output lines should print the loop variable, any input
read within the loop, and any totals or counters changed in the loop.

6.5.3 Sticky Points and Common Errors

Semicolons in the wrong places. The header of a for loop or the condition clause of a while loop or an
if statement is, normally, not followed by a semicolon.



6.5. WHAT YOU SHOULD REMEMBER 185

Off-by-one errors. The programmer must take care with every loop to make sure it repeats the correct
number of times. A small error can cause one too many or one too few iterations. Every loop should be tested
carefully to ensure that it executes the proper number of times. In some counted loops, the loop counter is
used as a subscript or as a part of a computation. In these loops, the results may be wrong even when the loop
is repeated the correct number of times. This kind of error happens when the value of the loop counter is off
by one because it is not incremented at the correct time in relation to the expression or expressions that use
the counter’s value. Consider these two counted loops:

for (sumj = j = 0; j < 10; ++j)
sumj += j; // Sum from 0 to 9

// -------------------------------------------------
sumk = k = 0;
while (k < 10) { // Sum from 1 to 10

++k;
sumk += k;

}

These loops are very similar, but k is incremented before adding it to sumk and j is incremented after adding
it to the sum. A programmer must decide which timing pattern is correct and be careful to write the correct
form.

Infinite loops. The for loop with no loop test sometimes is called an infinite loop, although most such loops
contain an if...break statement that stops execution under appropriate conditions. Such loops are useful
tools. However, a real infinite loop is not useful and should be avoided. Such loops are the result of forgetting
to include an update step in the loop body. (In a counted loop, the update step increments the loop variable.
In an input-controlled loop, it reads a new value for the loop variable.) During the construction and debugging
phases of a program, it is a good idea to put a puts() statement in every loop so that you can easily identify
an infinite loop when it occurs.

Nested logic. When using nested logic, the programmer must know how control will flow into, through, and
out of the unit. Statements such as break and continue affect the flow of control in ways that are simple when
single units are considered but become complex when control statements are nested. Be sure you understand
how your control statements interact.

6.5.4 Where to Find More Information

• Strings will be introduced in Chapter 12; a sentinel loop that processes a string is shown in Figure 12.14.

• Chapter 19 presents the code for quicksort, one of the best sorting algorithms. Arrays are used with
sentinel loops are used in that program.

• Chapter ?? presents two kinds of linked lists; both are typically processed using a sentinel loop.

• Chapter 8, Figure ex-char-work, we show how to use a query loop with character inputs (y/n), which
makes a better human interface than numeric responses (1/0).

• Figure 6.32 implements a simple version of a familiar guessing game. We revisit and elaborate on this
game in the Random Numbers program on the website.

• The switch statement is used with an enumerated type in Figure ??. Figures 12.34 and 15.27 show a
very typical use of switch to process single-character selections from a menu-interface.

• Appendix D describes the properties and usage of the conditional operator, ? :, which is the only operator
in C that has three operands. The first operand (before the ? is a condition. The second operand gives
an expression to evaluate if the condition is true. If it is false, the expression after the : is evaluated.
The result of the conditional operator is the result of whichever expression was evaluated.

6.5.5 New and Revisited Vocabulary

These terms and concepts have been defined or expanded in the chapter:



186 CHAPTER 6. MORE REPETITION AND DECISIONS

for loop loop header trip count search loop
loop variable input validation loop input-controlled loop
sentinel loop nested loops premature exit
sentinel value delay loop avoiding break
repeat query busy wait constant expression
counted loop flexible-exit loop off-by-one error

infinite for loop

The following C keywords were discussed in this chapter:

for loop break statement switch statement
, (comma operator) if...break statement case statement
do...while loop continue statement default clause

6.6 Exercises

6.6.1 Self-Test Exercises

1. The following program contains a loop. What is its output? Rewrite the loop using for instead of while.
Make sure the output does not change.

#include <stdio.h>
int main ( void )
{ int k, sum;

sum = k = 0;
while (k < 10) {

sum += k;
++k;

}
printf( "A. %i %i \n", k, sum );

}

2. The following program contains a loop. What is its output? Rewrite the loop using while instead of
do...while. Make sure the output does not change.

#include <stdio.h>
int main ( void )
{ int k, sum;

printf( " Please enter an exponent >= 0: " );
scanf( "%i", &k );
sum = 1;
do {

if (k > 0) sum = 2*sum;
--k;

} while (k > 0);
printf( "B. %i \n", sum );

}

3. Explain the fundamental differences between a series of if...else statements and a switch statement.
Under what conditions would you use a switch statement? Give an example of a problem for which you
could not use a switch statement.

4. Explain the fundamental differences between a while loop and a do...while loop. In what situation
would you use each?

5. Given the following fragment of a flow diagram, write the code that corresponds to it and define any
necessary variables:
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default

 add ()

choice

break modify ();

break

break

 delete ();

print error comment

 read menu choice 

  1

   2

   3

6. Draw a flow diagram for the cash register program in Figure 6.10.

7. Rewrite the following switch statement as an if...else sequence. (Write code, not a flowchart.)

switch (k) {
case 2:
case 12: puts( "You lose" ); break;
case 7:
case 11: puts( "You win" ); break;
default: puts( "Try again" );
}

8. Analyze the following loop and draw a flow diagram for it. Then trace the execution of the loop using
the initial values shown. Use a storage diagram to show the succession of values stored in each variable.
Finally, show the output, clearly labeled and in one place.

for (k = 0,j = 1; j < 3; j++) {
k += j;
printf( "\t %i\t %i\n", j, k );

}
printf( "\t %i\t %i\n", j,k );

9. What does each of the following loops print? They are supposed to print the numbers from 1 to 3. What
is wrong with them?

(a) for(k = 0; k < 3; ++k) printf( "k = %i", k );

(b) k = 1;
do {

printf( "k = %i", k );
k++;

} while (k < 3);

6.6.2 Using Pencil and Paper

1. Explain the fundamental differences between a counted loop and a sentinel loop. What C statement
would you use to implement each?

2. Explain the fundamental similarity between a while loop and a for loop. In what situation would you
use each?

3. Rewrite the following if...else sequence as a switch statement. Write code, not a flowchart.
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if (i == 0) puts( "bad" );
else if (i >= 1 && i < 3) puts( "better" );
else if (i == 4 || i == 5) puts( "good" );
else puts( "sorry" );
puts("------"):

4. Draw a flow diagram for the cash register program in Figure 6.24.

5. Given the following fragment of a flow diagram, write the code that corresponds to it and define any
necessary variables. What number will be printed by the last box?

k<5
k=1

++k

sum += k

sum = 0 k>0
k=8

k-=2

sum += k   k *

TT

FF
print sum

6. The following program contains a loop. What is its output? Rewrite the loop using do...while instead
of for. Keep the output the same.

#include <stdio.h>
int main ( void )
{ int k, sum;

for ( sum = k = 0; k < 5; ++k ) sum += k;
printf( "C. %i %i \n", k, sum );

}

7. The following program contains a loop. What is its output? Rewrite the loop without using break. Keep
the output the same.

#include <stdio.h>
int main ( void )
{ int k, sum;

for (sum = k = 1 ; k < 10; k++) {
sum *= k;
if (sum > 10*k) break;

}
printf( "D. %i %i \n", k, sum );

}

8. What does the following loop print? It is supposed to print out the numbers from 1 to 3. What is wrong
with it?

for(k=1; k<=3; ++k);
printf( "k=%i", k );

9. Analyze each loop that follows and draw a flow diagram for it. Then trace execution of the loop using
the initial values shown. Use a storage diagram to show the succession of values stored in each variable.
Finally, show the output from each exercise, clearly labeled and in one place.

(a) k=2;
do { printf("\t %i\n", k); --k; } while (k>=0);
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(b) j=k=0;
while (j<3){ k+=j; printf("\t %i\t %i\n", j, k); ++j; }

10. Given the following code,

#include <stdio.h>
int main( void )
{ int j,k;

for (j = 1; j < 3; j++) {
for (k = 0; k < 5; k += 2) {

if (k != 4) printf( " %i, %i ", k, j );
else k--;

}
printf( "\n" );
if (j % 2 == 1) printf( ">>> %i , %i <<<\n", j, k );

}
}

(a) Draw a flowchart that corresponds to the program.

(b) Using a table like the one that follows, trace the execution of the program. Show the initial values of
j and k. For each trip through a loop, show how the values of j and k change and what is displayed
on the screen. Draw a vertical line between the columns that correspond to each trip through the
inner loop.

j
k

Output

6.6.3 Using the Computer

1. Sum a series.

Write a program that uses a for loop to sum the first 100 terms of the series 1/x2. Use Figure 6.15 as a
guide. Develop a test plan and carry it out. Turn in the source code and output of your program when
run on the test data.

2. Sum a function.

Write a function with parameter x that will compute the value of f(x) = (3× x+ 1)
1
2 .

Write a main program that sums f(x) from x = 0 to x =1,000 in increments of 2. Use a for loop. Print
the result.

3. Find the best.

Write a program that will allow an instructor to enter a series of exam scores. After the last score, the
instructor should enter a negative number as a signal that there is no more input. Print the average of
all the scores and the highest score entered.

4. Gas prices.

The example at the end of Chapter 3 (Figure 3.18) is a program that converts a Canadian gas price to
an equivalent U.S. gas price. This program does the calculation for only one price. Modify it so that it
can convert a series of prices, as follows:

(a) Remove the price-per-liter input, computation, and output from the main program and put them
in a separate function, named convert().
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(b) In place of this code in the main program, substitute a query loop that will allow you to enter a
series of Canadian prices. For each, call convert() to do the work.

5. An increasing voltage pattern.

Write a program that will calculate and print out a series of voltages.

(a) Prompt the user for a value of vmax and restrict it to the range 12 <= vmax <= 24. Let time t
start at 0 and increase by 1 at each step until the voltage v > 95% of vmax; v is a function of time
according to the following formula. Print the time and voltage at each step.

v = vmax×
(

1− e(−0.1×t)
)

(b) Add a delay loop so that the voltage output is timed more slowly. See Figure 6.19.

6. Sine or cosine?

(a) Write a double→double function, f(), with one double parameter, x, that will evaluate either
f1(x) = x2 sin(x) + e−x if x ≤ 1.0 or f2(x) = x3 cos(x) − log(x) if x > 1.0, and return the result.
Write a prototype that can be included at the top of a program.

(b) Start with the main program in Figure 6.12. Modify the program title and write a new work()
function that will input a value for x, call f() using the value of x, and output the result.

(c) Design a test plan for your program.

(d) Incorporate all the pieces of your program in one file and compile it. Then carry out the test plan
to verify the program’s correctness.

7. A voltage signal.

An experiment will be carried out repeatedly using an ac voltage signal. The signal is to have one of
three values, depending on the time since the beginning of the experiment:

(a) For time t < 1, volts(t) = 0.5× sin(2t).

(b) For time 1.0 ≤ t ≤ 10.0, volts(t) = sin(t).

(c) For time t > 10.0, volts(t) = sin(10.0).

(a) Write a function named volts() with t as a parameter that will calculate and return the correct
voltage. Use the function in Figure 5.18 as a guide.

(b) Using Figure 6.12 as a guide, write a main program that starts at time 0. Use a loop to call the
volts() function and output the result. Increment the time by 0.5 after each repetition until the
time reaches 12. Print the results in the form of a neat table.

8. Rolling dice.
Over a large number of trials, a “fair” random number generator will return each of the possible values
approximately an equal number of times. Therefore, in each set of 60 trials, if values are generated in
the range 1 . . . 6, there should be about 10 ones and 10 sixes.

(a) Using the loop in Figure 5.26 as a guide, write a function that will generate 60 random numbers in
the range 1 . . . 6. Use if statements to count the number of times 1 and 6 each turns up. At the
end, print out the number of ones and the number of sixes that occurred.

(b) Following the example in Figure 6.12, write a main program that will call the function from part
(a) 10 times. The main program should print table headings; the function will print each set of
results under those headings. Look at your results; are the numbers of ones and sixes what you
expected? Try it again. Are the results similar? Can you draw any conclusions about the quality
of the algorithm for generating random numbers?
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9. Prime number testing.
A prime number is an integer that has no factors except itself and 1. The first several prime numbers
are 2, 3, 5, 7, 11, 13, 17, and 19. Very large prime numbers have become important in the field of
cryptography. The original public-key cryptographic algorithm is based on the fact that there is no fast
way to find the prime factors of a 200-digit number that is the product of two 100-digit prime numbers.
In this program, you will implement a simple but very slow way to test whether a number is prime.

One method of testing a number N for primality, is by calculating N % x, where x is equal to every
prime number from 2 to R =

√
N . If any of these results equals 0, then N is not a prime. We can stop

testing at
√
N, since if N has any factor greater than R, it also must have a factor less than or equal to

R. Unfortunately, keeping track of a list of prime numbers requires techniques that have not yet been
presented. However, a less efficient method is to calculate N % x for x = 2 and every odd number between
3 and

√
N . Some of these numbers will be primes, most will not. But if any one value divides N evenly,

we know that N is not a prime.

Write a function that enters an integer N to test and prints the word prime if it is a prime number
or nonprime otherwise. Write a main program with a query loop to test many numbers.


